Cho hình thoi ABCD, góc A= 60°, trên các cạnh AB, BC lấy điểm M, N sao cho BM+BN=AB.
CMR: đường trung trực của MN luôn đi qua một điểm cố định
Giúp mik vs nhé mai mik học r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác MNC có:
I trung điểm MN
K trung điểm MC
Vậy IK là đường trung bình của tam giác MNC
=> IK = 1/2 NC (1)
Mặt khác, xét tam giác MCB có:
K trung điểm MC
J trung điểm BC
Vậy KJ là đường trung bình tam giác MCB
=> KJ =1/2 BM (2)
mà BM = CN (gt) (3)
Từ (1), (2) và (3) => IK = KJ
=> Tam giác IKJ cân tại K
Lại có IK // NC (tính chất đường trung bình trong tam giác)
=> góc KIJ = góc CEJ (đồng vị) (4)
KJ // BM (tính chất đường trung bình trong tam giác)
=> góc KJI = ADJ (so le trong) (5)
mà góc KIJ = góc KJI (tam giác IKJ cân tại K) (6)
Từ (4), (5), (6) => góc ADE = góc AED
=> Tam giác ADE cân tại A (đpcm)
b/ Ko biết làm ^^
c/ Ko biết làm ^^
Nối DM, DN
Trên cạnh AD lấy H sao cho AH = AM
\(\Delta\) AHM có AH = AM (cách vẽ) nên \(\Delta\) AHM cân tại A (đn)
\(\Delta\) AHM cân tại A có góc A = 60o (gt) nên \(\Delta\) AHM đều
=> MH = AM = AH
ABCD là hình thoi (gt) nên AB = BC = CD = AD (đn)
AB = BC <=> BN + NC = BM + AM = AB
Mà BM + BN = AB (gt)
Do đó, BM = NC, AM = BN = MH
AB = AD (cmt) <=> BM + AM = AH + HD
Mà AM = AH (cách vẽ)
Do đó, BM = HD
ABCD là hình thoi (gt) nên AD // BC (t/c)
=> góc A + góc B = 180o (trong cùng phía)
<=> 60o + góc B = 180o
<=> góc B = 120o
\(\Delta AMH\) đều (cmt) nên góc AHM = 60o
Lại có: AHM + MHD = 180o (kề bù)
Do đó, MHD = 120o
\(\Delta MBN=\Delta DHM\left(c.g.c\right)\)=> MN = MD (2 cạnh t/ứ)
và góc N1 = góc M1
Lại có: N1 + M2 = 60o (tự c/m)
Do đó, M1 + M2 = 60o
=> góc DMN = 60o
\(\Delta\) DMN cân tại M (vì MN = MD) có DMN = 60o (cmt) nên tam giác DMN đều
=> đường trung trực của MN đi qua D
Mà D cố định do hình thoi ABCD cố định nên ta có đpcm