1. Cho biết x , y , z # 0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\) .
Chứng minh rằng : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
2. Rút gọn : \(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) , biết rằng : x + y + z = 0
3. Cho 3x - y = 3z và 2x + y = 7z . Tính giá trị cua biểu thức :
M = \(\dfrac{x^2-2xy}{x^2+y^2}\) ( x # 0 ; y # 0 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co x+y+3/z=y+z+1/x=x+z+2/y=1/x+y+z, theo tinh chat cua day ti so bang nhau ta co
x+y+3/z=y+z+1/x=x+z+2/y=1/x+y+z=(3+1+2)+2x+2y+2z/z+y+x=6+2(x+y+z)/x+y+z=8
suy ra 1/x+y+z=8 suy ra x+y+z=1/8(1)
ta co x+y+3/z=y+z+1/x=x+z+2/y=8
suy ra x+y+3/z+1=y+z+1/x=x+z+2/y+1
suy ra x+y+z+3/z=y+z+x+1=x+z+y+2/y=9(2)
the (1) vao (2) ta co
1/8+3/z=1/8+1/y=1/8+2/x
suy ra 25/8/z=9/8/y=17/8/x
suy ra z=25/8:8=25/64
y=9/8:8=9/64
x=17/8:8=17/64
nho nhe
Sửa đề: \(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\ge\dfrac{3}{4}\)
Đặt \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(P=\dfrac{x+1}{x+1}-\dfrac{1}{x+1}+\dfrac{y+1}{y+1}-\dfrac{1}{y+1}+\dfrac{z+1}{z+1}-\dfrac{1}{z+1}\)
\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{4}\) ( vì \(x+y+z=1\) )
\(\Rightarrow P\ge3-\dfrac{9}{4}=\dfrac{3}{4}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(x+1=y+1=z+1\)
\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Vậy \(Max_P=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{3}\)
Ta có :
x - y - z = 0
=>
x = y + z ; y = x - z ; z = x - y |
Có :
\(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(B=\left(\frac{x-z}{x}\right).\left(\frac{y-x}{y}\right).\left(\frac{z+y}{z}\right)\)
Thay các biểu thức trong khung trên và B ta có :
\(B=\frac{y}{x}.\frac{y-\left(y+z\right)}{y}.\frac{x}{z}\)
=> \(B=\frac{y}{x}.\frac{y-y-z}{y}.\frac{x}{z}=\frac{y.\left(-z\right).x}{x.y.z}=-1\)
Vậy B = -1
nha !!!
Ta có: \(x-y-z=0\Rightarrow\hept{\begin{cases}x=z+y\\y=x-z\\-z=y-x\end{cases}}\)
\(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(\Rightarrow B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)
\(\Rightarrow B=\frac{y.\left(-z\right).x}{x.y.z}=-1\)
Vậy giá trị của biểu thức \(B=-1.\)
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2
x + y = 7/12 => x = 7/12 - y
y + z = -19/24 => z = -19/24 - y
Mà z + x = 1/8 => 7/12 - y - 19/24 - y = 1/8
=> 2y = 7/12 - 19/24 - 1/8 => 2y = -1/3
=> y = -1/6
M = x+y/z + x+z/y + y+z/x
M = x+y+z/z + x+y+z/y + x+y+z/x - z/z - y/y - x/x
M = (x+y+z).(1/z + 1/y + 1/x) - 1 - 1 - 1
M = 2020.1/202 - 3
M = 10 - 3 = 7