K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

a) \(3\sqrt{3}-3\sqrt{4^2\cdot3}+2\sqrt{6^2\cdot3}-\left(2-\sqrt{3}\right)\)

\(3\sqrt{3}-3\cdot4\sqrt{3}+2\cdot6\sqrt{3}-2+\sqrt{3}\)

\(3\sqrt{3}-12\sqrt{3}+12\sqrt{3}-2+\sqrt{3}\)

\(4\sqrt{3}-2\)

b) \(3\sqrt{2}\left(\sqrt{5^2\cdot2}-2\sqrt{3^2\cdot2}+\sqrt{7^2\cdot2}\right)\)

\(3\sqrt{2}\left(5\sqrt{2}-6\sqrt{2}+7\sqrt{2}\right)\)

\(3\sqrt{2}\left(6\sqrt{2}\right)\) \(=36\)

7 tháng 11 2017

\(a=\sqrt{27}-3\sqrt{48}+2\sqrt{108}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(a=3\sqrt{3}-3\sqrt{48}+\sqrt{216}-2+\sqrt{3}\)

\(a=3\sqrt{3}-3\sqrt{48}+3\sqrt{24}-2+\sqrt{3}\)

\(a=3\left(\sqrt{3}-\sqrt{48}+\sqrt{24}+1\right)-2\)

Tính cái trong ngoặc là \(ok\).Em lười đi lấy máy tính lắm

\(b=3\sqrt{2}\left(\sqrt{50}-2\sqrt{18}+\sqrt{98}\right)\)

\(b=3\sqrt{100}-3\sqrt{72}+3\sqrt{196}\)

\(b=3\left(\sqrt{100}-\sqrt{72}+\sqrt{196}\right)\)(Tính trong ngoặc)

a) Ta có: \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

\(=\dfrac{-2\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{6}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)

\(=\dfrac{-3}{\sqrt{6}}=\dfrac{-3\sqrt{6}}{6}=\dfrac{-\sqrt{6}}{2}\)

b) Ta có: \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1-\sqrt{2}-\sqrt{3}\right)\)

\(=1-\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(=1-5-2\sqrt{6}\)

\(=-4-2\sqrt{6}\)

30 tháng 6 2021

a) \(\text{2}\sqrt{\text{18}}-9\sqrt{50}+3\sqrt{8}\)

\(\text{6}\sqrt{\text{2}}-45\sqrt{2}+6\sqrt{2}\)

\(-33\sqrt{2}\)

30 tháng 6 2021

b) = \(7-2.\sqrt{7}.\sqrt{3}+3+7.2\sqrt{21}\)

\(10-2\sqrt{21}+14\sqrt{21}\)

\(10+12\sqrt{21}\)

bài 1: 

a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)

\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)

\(=-33\sqrt{2}\)

b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)

\(=10-2\sqrt{21}+14\sqrt{21}\)

\(=12\sqrt{21}+10\)

Bài 2: 

a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)

\(\Leftrightarrow\left|2x+3\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)

b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=8\)

hay x=4

c: Ta có: \(\sqrt{9x-9}+1=13\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow x-1=16\)

hay x=17

3 tháng 8 2016

a) \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=\left(2+6+15-36\right)\sqrt{3}=-13\sqrt{3}\)

b) \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=6\left(3+8-5\right)=36\)

 

3 tháng 8 2016

a)\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)

\(=\sqrt{4\cdot3}+2\sqrt{9\cdot3}+3\sqrt{25\cdot3}-9\sqrt{16\cdot3}\)

\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=-13\sqrt{3}\)

b)\(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)

\(=2\sqrt{3}\left(\sqrt{9\cdot3}+2\sqrt{16\cdot3}-\sqrt{25\cdot3}\right)\)

\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(2\sqrt{3}\cdot6\sqrt{3}=12\cdot3=36\)

 

6 tháng 6 2021

Bài 2:

a)\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: \(x\ge2\))

\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+\dfrac{6}{\sqrt{81}}\sqrt{x-2}=-4\)

\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)

\(\Leftrightarrow-\sqrt{x-2}=-4\) \(\Leftrightarrow x-2=16\)

\(\Leftrightarrow x=18\) (thỏa)

Vậy...

b)\(\sqrt{9x^2+12x+4}=4x\)(Đk:\(9x^2+12x+4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}4x\ge0\\9x^2+12x+4=16x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+12x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+14x-2x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-2\right)\left(-7x-2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{7}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=2\) (tm đk)

Vậy...

c) \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\) (đk: \(x\ge1\))

\(\Leftrightarrow x-2\sqrt{x-1}=x-1\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\) \(\Leftrightarrow x=\dfrac{5}{4}\) (tm)

Vậy...

22 tháng 8 2019

\(a.\\ \left(\sqrt{4.3}-\sqrt{16.3}-\sqrt{36.3}-\sqrt{64.3}\right)\\ =\left(2\sqrt{3}-4\sqrt{3}-6\sqrt{3}-8\sqrt{3}\right):2\sqrt{3}\\ =\frac{-16\sqrt{3}}{2\sqrt{3}}=-8\)

\(b.\\ =\left(2\sqrt{16.7}-5\sqrt{7}+2\sqrt{9.7}-2\sqrt{4.7}\right)\sqrt{7}\\ =\left(8\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7}\right)\sqrt{7}\\ =5\sqrt{7}.\sqrt{7}=5.7=35\)

\(c.\\ =\left(2\sqrt{9.3}-3\sqrt{16.3}+3\sqrt{25.3}-\sqrt{64.3}\right)\left(1-\sqrt{3}\right)\\ =\left(6\sqrt{3}-12\sqrt{3}+15\sqrt{3}-8\sqrt{3}\right)\left(1-\sqrt{3}\right)\\ =\sqrt{3}\left(1-\sqrt{3}\right)\\ =\sqrt{3}-3\)

\(d.\\ =7\sqrt{4.6}-\sqrt{25.6}-5\sqrt{9.6}\\ =14\sqrt{6}-5\sqrt{6}-15\sqrt{6}=-6\sqrt{6}\)

a) Ta có: \(D=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\cdot\left(-\sqrt{2}\right)\)

\(=-2+\sqrt{6-2\sqrt{5}}\)

\(=-2+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\)

\(=-2+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=-2+\left|\sqrt{5}-1\right|\)

\(=-2+\sqrt{5}-1\)(Vì \(\sqrt{5}>1\))

\(=-3+\sqrt{5}\)

b) Ta có: \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}\right)-\sqrt{75}\)

\(=2\sqrt{81}+4\sqrt{144}-5\sqrt{3}\)

\(=18+48-5\sqrt{3}\)

\(=66-5\sqrt{3}\)

c) Ta có: \(E=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\sqrt{2}\cdot\left(\sqrt{5}+\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{2}\cdot\left(\sqrt{5}+\sqrt{3}\right)\cdot\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\sqrt{2}\cdot\left(\sqrt{5}+\sqrt{3}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=\sqrt{2}\cdot\left(5-3\right)\)

\(=2\sqrt{2}\)

d) Ta có: \(P=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\frac{3}{2}+2\cdot\sqrt{\frac{3}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}+\sqrt{\frac{3}{2}-2\cdot\sqrt{\frac{3}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}\)

\(=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)

\(=\left|\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right|+\left|\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right|\)

\(=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\)(Vì \(\sqrt{\frac{3}{2}}>\sqrt{\frac{1}{2}}>0\))

\(=2\sqrt{\frac{3}{2}}=\sqrt{4\cdot\frac{3}{2}}=\sqrt{6}\)

e) Ta có: \(M=-3\sqrt{50}+2\sqrt{98}-7\sqrt{72}\)

\(=\sqrt{2}\cdot\left(-3\cdot\sqrt{25}+2\cdot\sqrt{49}-7\cdot\sqrt{36}\right)\)

\(=\sqrt{2}\cdot\left(-15+14-42\right)\)

\(=-43\sqrt{2}\)

21 tháng 7 2019

a/\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)

\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)

b/ \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)

\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(=2\sqrt{3}\cdot6\sqrt{3}=2\cdot6\cdot3=36\)

c/ \(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)

\(=\left(1+\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)

\(=1+2\sqrt{3}+3-2\)

\(=2+2\sqrt{3}\)

d/ \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{13-4\sqrt{10}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{8-4\sqrt{10}+5}-\sqrt{45+12\sqrt{10}+8}\)

\(=\sqrt{\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2\cdot5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\cdot2\sqrt{5\cdot2}+\left(2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)

\(=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}\)

\(=-4\sqrt{5}\)

21 tháng 7 2019

#)Giải :

 \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)