K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

f(x) =Q(x) .(x-1)(x-3) +r(x)

f(1) =4 => r(1) =1

f(3) =14 => r(3) =14

=> a +b=1

14=3a+b=2a+a+b=14=> 2a=13 => a =13/2; b =-11/2

r(x) =13/2 x -11/2

16 tháng 11 2017

\(f\left(x\right)=q\left(x\right).\left(x-1\right)\left(x-3\right)+ax+b\)

\(\left\{{}\begin{matrix}f\left(1\right)=q\left(x\right).0+a+b=4\left(1\right)\\f\left(3\right)=q\left(x\right).0+a.3+b=14\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=-1\\a=5\end{matrix}\right.\) phân dư phép chia là : 5x-1Phan Thị Huyền

NV
6 tháng 1

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó  \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2\):

\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)

6 tháng 1

Do �(�) chia hết 2�−5, theo định lý Bezout:

�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0

⇒�=−10

Khi đó  �(�)=6�3−7�2−16�−10

Số dư phép chia cho 3�−2:

�(23)=6.(23)3−7.(23)2−16.(23)−10=−22

15 tháng 10 2021

\(f\left(x\right):\left(x-a\right)\) dư r1

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\cdot a\left(x\right)+r_1\\ \Leftrightarrow f\left(a\right)=r_1\)

Vì \(\left(x-a\right)\left(x-b\right)\) là đa thức bậc 2 nên có dư bậc 1

Gọi dư của \(f\left(x\right):\left(x-a\right)\left(x-b\right)\) là \(cx+d\)

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ \Leftrightarrow f\left(a\right)=ac+d=r_1\left(1\right)\\ f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ =\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+c\left(x-b\right)+bc+d\\ =\left(x-b\right)\left[\left(x-a\right)\cdot c\left(x\right)+c\right]+bc+d\)

Vì \(f\left(x\right):\left(x-b\right)\) dư r2 nên \(bc+d=r_2\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}bc+d=r_2\\ac+d=r_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c\left(a-b\right)=r_1-r_2\\ac+d=r_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=r_1-\dfrac{a\left(r_1-r_2\right)}{a-b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=\dfrac{ar_2-br_1}{a-b}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{r_1-r_2}{a-b}x+\dfrac{ar_2-br_1}{a-b}\)

 

NV
12 tháng 3 2021

\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)

\(\Rightarrow a-b+c=-3\)

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)

\(\Rightarrow3a+3b=0\Rightarrow a=-b\)

\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)

\(\Rightarrow A=0\)

2 tháng 3 2018

1) Ta có f(x) = (x - 2)g(x) + 2005

              f(x) = (x - 3)h(x) + 2006

Do đa thức x2 - 5x + 6 là đa thức bậc hai nên số dư sẽ là đa thức bậc nhất hoặc hạng tử tự do.

Giả sử f(x) = (x - 2)(x - 3)t(x) + ax + b

Ta có:  f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 2)[(x - 3)t(x) + a] + 2a + b , suy ra ra 2a + b = 2005

           f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 3)[(x - 2)t(x) + a] + 3a + b , suy ra ra 3a + b = 2006

Từ đó ta tìm được a = 1; b = 2003

Vậy f(x) chia cho x2 - 5x + 6 dư x + 2003.

3 tháng 3 2019

Ủa sao chự nhiên có f(x) ở đây. À mà nói vậy thì cũng sai, chứ câu này chỉ có fan KPOP mới hiểu!^-^

4 tháng 12 2018

x \(\varepsilon\) { 1 ; -4 }

4 tháng 12 2018

\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)

Để dư bằng 0 thì \(x^2-5x+4=0\)

\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

NV
21 tháng 9 2019

Bạn vào đây xem thử

Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến