K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

Có vẽ hình ko bạn

17 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: IA = ID = IE (chứng minh trên)

Suy ra A nằm trên đường tròn tâm I đường kính DE

Vì OO’ ⊥ IA tại A nên OO’ là tiếp tuyến của đường tròn (I; DE/2)

4 tháng 2 2021

a)     Xét (O): AI và DI là 2 tiếp tuyến cắt nhau tại I (gt)

=> AI = DI (TC 2 tiếp tuyến cắt nhau)

CMTT: AI = EI  (TC 2 tiếp tuyến cắt nhau)

=> AI = EI = DI

Mà  DE = EI + DI

=>AI = EI = DI =\(\dfrac{DE}{2}\)

Xét tam giác ADE có: AI = EI = DI =\(\dfrac{DE}{2}\)(cmt)

=> Tam giác ADE vuông tại A (định lý đảo đường trung tuyến trong tam giác vuông)

=> ^MAN = 90o

Xét tam giác AID: AI = DI (cmt) => Tam giác AID cân tại I 

Mà IM là đường phân giác AID (AI và DI là 2 tiếp tuyến cắt nhau tại I)

=>  IM là đường cao

=> ^IMA = 90o

CMTT: ^ANI = 90o

Xét TG AMIN:

 ^IMA = 90o (cmt)

^ANI = 90o (cmt)

^MAN = 90(cmt)

=> AMIN là hình chữ nhật (dhnb)

b) Xét tam giác OAI vuông tại A, AM là đường cao ( do AM vg góc OI)

=> IM.IO = IA2 (HTL) (1)

Xét tam giác O'AI vuông tại A, AN là đường cao ( do AN vg góc O'I)

=> IN.IO' = IA2 (HTL) (2)

Từ (1) và (2) => IM.IO = IN.IO’ (đpcm)

c) Xét (O) và (O'): 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A (cmt)

=> A \(\in\)OO' (TC đường nối tâm)

mà IA vg góc AO (do AI là tiếp tuyến trong của 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A )

=> OO' vg góc AI tại A  (*)

Xét tam giác ADE vuông tại A (^DAE = 90o do AMIN là hcn)

I là TĐ của DE (do ID = IE = \(\dfrac{DE}{2}\))

=> I là tâm đường tròn đường kính DE, nội tiếp tam giác ADE  

=> A \(\in\)(I) (**)

Từ (*) và (**) => OO’ là tiếp tuyến của đường tròn đường kính DE có A là tiếp điểm.

d) Xét tg OIO' vuông tại I, AI là đường cao:

AI= AO . AO' (HTL)

=> AI2= R. R'

Mà AI = \(\dfrac{DE}{2}\)(cmt)

=> (\(\dfrac{DE}{2}\))2 = R . R'

<=> \(\dfrac{DE^2}{4}\) = R . R'

<=> DE = 2\(\sqrt{R.R'}\)

 

 

 

 

 

9 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà OB ⊥ BC ⇒ IM ⊥ BC

Ta có:

IM ⊥ BC

BC ⋂ (I; IM) = {M}

Suy ra, BC là tiếp tuyến của đường tròn tâm I, bán kính IM

28 tháng 8 2019

Đường tròn có đường kính BC có tâm M, bán kính MA.OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).

19 tháng 7 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi I là trung điểm của OO', I là tâm của đường tròn có đường kính OO', IM là bán kính (vì MI là trung tuyến ứng với cạnh huyền của MOO'. IM là đường trung bình của hình thang OBCO' nên IM // OB // O'C. Do đó IM ⊥ BC.

BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I).

7 tháng 4 2020

Giải:

a) Kẻ tiếp tuyến chung tại A cắt DE tại I

Trong đường tròn (O) ta có:

        IA = ID (tính chất hai tiếp tuyến cắt nhau)

Trong đường tròn (O’) ta có:

Quảng cáo

        IA = IE (tính chất hai tiếp tuyến cắt nhau)

Suy ra: IA=ID=IE=12DEIA=ID=IE=12DE

Tam giác ADE có đường trung tuyến AI ứng với cạnh DE và bằng nửa cạnh DE nên tam giác ADE vuông tại A.

Suy ra: ˆEAD=90∘EAD^=90∘

b) Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên ˆADB=90∘ADB^=90∘ hay ˆAEM=90∘AEM^=90∘

Mặt khác: ˆEAD=90∘EAD^=90∘ (chứng minh trên)

Tứ giác ADME có ba góc vuông nên nó là hình chữ nhật.

c) Tứ giác ADME là hình chữ nhật và ID = IE (chứng minh trên) nên đường chéo

AM của hình chữ nhật phải đi qua trung điểm I của DE. Suy ra: A, I, M thẳng hàng.

Ta có: IA ⊥ OO’ ( vì IA là tiếp tuyến của (O))

Suy ra: AM ⊥ OO’

Vậy MA là tiếp tuyến chung của đường tròn (O) và (O’).