tinh:
S = \(2^{2010}-2^{2009}-2^{2008}-...-2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=22010-22009-22008-...-2-1
=> 2S=2. 22010 -2. 22009-2. 22008-....-2.2-2.1
2S=22011-22010-22009-....-22-2
- S=22010-22009-22008-...-2-1
=>S=22011-1
\(S=-\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(-2S=2\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(\Rightarrow-2S+S=-S=2+2^2+...+2^{2010}+2^{2011}-1-2-...-2^{2009}-2^{2010}\)
\(-S=2^{2011}-1\Rightarrow S=1-2^{2011}\)
S=22010 - 22009 - 22008 -...-2-1
=>2S=2 x 22010 - 2 x 22009 - 2 x 22008 -...-2 x 2 -2 x 1
2S=22011 - 22010 - 22009 - ... - 22 -2
=>S=1-22011
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
\(S=2^{2010}-2^{2009}-...-2-1\)
\(2S=2^{2011}-2^{2010}-2^{2009}-....-2^2-2\)
Trừ dưới cho trên:
\(S=2^{2011}-2.2^{2010}+1=2^{2011}-2^{2011}+1=1\)
S=22010-22009-22008-...-2-1
=>2S=22011-22010-22009-...-22-2
=>2S-S=22011-22010-22009-...-22-2-22010+22009+22008+...+2+1
=>S=22011-22010-22010+1
=>S=22011-2*22010+1
=>S=22011-22011+1
=>S=1