Cho a+b+c+d\(\ne\)0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
Tìm giá trị của A=\(\dfrac{a+b}{c+d}=\dfrac{b+c}{a+d}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}b+c+d=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=2a\\a+b+c+d=2b\\a+b+c+d=2c\\a+b+c+d=2d\end{matrix}\right.\\ \Rightarrow2a=2b=2c=2d\\ \Rightarrow a=b=c=d\\ \Rightarrow A=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\\ \Rightarrow\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{a+b+d}{c}=\dfrac{a+b+c}{d}=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\\ \Rightarrow\left\{{}\begin{matrix}b+d+c=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=4a\\a+b+c+d=4b\\a+b+c+d=4c\\a+b+c+d=4d\end{matrix}\right.\\ \Rightarrow4a=4b=4c=4d\Rightarrow a=b=c=d\\ \Rightarrow P=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)
a: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Lời giải:
Áp dụng TCDTSBN:
$\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}$
$=\frac{a+b+c-d+b+c+d-a+c+d+a-b+d+a+b-c}{d+a+b+c}$
$=\frac{2(a+b+c+d)}{a+b+c+d}=2$
$\Rightarrow a+b+c-d=2d; b+c+d-a=2a; c+d+a-b=2b; d+a+b-c=2c$
$\Rightarrow a+b+c=3d; b+c+d=3a; c+d+a=3b; d+a+b=3c$
Khi đó:
\(P=\frac{a+b+c}{a}.\frac{b+c+d}{b}.\frac{c+d+a}{c}.\frac{a+b+d}{d}\\ =\frac{3d}{a}.\frac{3a}{b}.\frac{3b}{c}.\frac{3c}{d}=81\)
TH1: \(a+b+c+d\ne0\)
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow a=b=c=d\)
\(P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\Rightarrow P=1+1+1+1\)
\(\Rightarrow P=4\)
TH2: \(a+b+c+d=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\Rightarrow P=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(d+a\right)}{d+a}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}\)
\(\Rightarrow P=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(\Rightarrow P=-4\)
bn mình nền của bn là nôb team trưởng team là t gaming
\(TH1:a+b+c+d\ne0\)
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(=1+1+1+1\)
\(=4\)
\(TH2:a+b+c+d=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(=-\dfrac{c+d}{c+d}-\dfrac{d+a}{d+a}-\dfrac{a+b}{a+b}-\dfrac{b+c}{b+c}\)
\(=-1-1-1-1\)
\(=-4\)
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}\dfrac{1}{3}\)(vìa+b+c+d\(\ne\)0)
=>3a=b+c+d: 3b=a+c+d=>3a-3b=b-a
=>3(a-b)=-(a-b)=>4(a-b)=0=>a=b
Tương tự => a=b=c=d=> A=4
Ta có: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Ta có: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{a+b}{a+b+2\left(c+d\right)}=\dfrac{1}{3}\)
\(\Rightarrow3\left(a+b\right)=\left(a+b\right)+2\left(c+d\right)\)
\(\Rightarrow2\left(a+b\right)=2\left(c+d\right)\)
\(\Rightarrow a+b=c+d\)
\(\Rightarrow\dfrac{a+b}{c+d}=1\)
Tương tự:\(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)
Vậy A=4.