K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)

Để pt có 2 nghiệm trái dấu thì 

\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi mb) tìm m để 3.x1 + 2.x2 = 5m -16c) cho A= x1² + x2² + 6.x1.x2c.1) tìm m để A = -44c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.f) tìm m để phương...
Đọc tiếp

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m

b) tìm m để 3.x1 + 2.x2 = 5m -16

c) cho A= x1² + x2² + 6.x1.x2

c.1) tìm m để A = -44

c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.

d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.

e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.

f) tìm m để phương trình có hai nghiệm có hai nghiệm trái dấu.

g) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dấu.

h) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dương.

i) tìm m để phương trình có hai nghiệm có hai nghiệm cùng âm.

j) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.

k) cho B= x1² + x2² - 22.x1.x2 - x1².x2²

l) tìm m để phương trình có một nghiệm x1=2. Tìm nghiệm còn lại.

m) tìm m để x1³ + x2³ <0

n) lập phương trình có 2 nghiệm gấp đôi hai nghiệm của phương trình (*)

 

3
1 tháng 2 2022

TL :

Đề sai

\(x1^2\)là số gì

HT

1 tháng 2 2022

Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

a: Thay x=5 vào pt, ta được:

25-5m-m-1=0

=>24-6m=0

hay m=4

b: \(\text{Δ}=\left(-m\right)^2-4\left(-m-1\right)\)

\(=m^2+4m+4=\left(m+2\right)^2\)

Để phương trình có hai nghiệm phân biệt thì m+2<>0

hay m<>-2

d: Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}m>0\\-m-1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

17 tháng 4 2016

trời đất
ai tl hộ mình vs

24 tháng 2 2021

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....