gia tri nho nhat cua x de \(\dfrac{x^2-2x+2007}{2007x^2}\)
co gia tri nho nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Ta có: \(3\left(2x+9\right)^2\ge0\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
=> \(3\left(2x+9\right)^2-1\ge-1\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
Vậy GTNN của \(3\left(2x+9\right)^2-1\) là -1 với \(x=-\frac{9}{2}\)
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
\(Tacó\) \(\frac{42-x}{x-15}=\frac{57-x-15}{x-15}\) =\(\frac{57}{x-15}-1\) suy ra x-15 thuộc ước 57 ......
Ta có: (-3-x)2\(\ge\)0 với mọi x
=>(-3-x)2+5 \(\ge\)0+5 với mọi x
=>A\(\ge\)5 với mọi x
Vậy A Min = 5 khi x=-3
Vì |y + 3| luôn lớn bằng 0 với mọi y
=> 100 - |y + 3| luôn bé bằng 0
=> B luôn bé bằng 0
Dấu "=" xảy ra <=> |y + 3| = 0
=> y + 3 = 0
=> y = -3
Vậy Max B = 100 tại y = -3
Ta có - |y - 3| < 0
=> B = 100 - |y - 3| < 100
GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3
quy đồng nhân cả tử với mẫu với 2007 ta có
A=\(\frac{2007x^2-2.2007x+2007^2}{2007^2x^2} =\frac{x^2-2.2007x+2007^2+2006x^2}{2007^2x^2}=\frac{(x-2007)^2+2006x^2}{2007^2x^2} \)
=\(\frac{(x-2007)^2}{2007^2x^2}+\frac{2006x^2}{2007^2x^2}=\frac{2006}{2007^2}+ \frac{(x-2007)^2}{2007^2x^2} \)
Min A=\(\frac{2006}{2007^2}\)<=>x=2007