Cho A= \(^{2^0}\)+\(^{2^1}\)+\(^{2^2}\)+...+\(^{2^{2017}}\), B= \(^{2^{2018}}\). So sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ax2=2+2^2+2^3+...+2^2018
Ax2 - A =(2+2^2+2^3+...+2^2018)-(2^0+2^1+2^2+...+2^2017)=2^2018-1
Mà 2^2018-1<2^2018 nên A<b
Ta có: A= 1+2+2^2+2^3+...+2^2018
2A = 2+2^2+2^3+2^4+...+2^2019
2A-A=A= 2^2019-1 = (2^2017.4) -1
Mà B=5.2^2017
=> (2^2017.4) -1 < 5.2^2017
=> A < B
A = 20 + 21 + 22 + ... + 22017
2A = 21 + 22 + 23 + ... + 22018
2A - A = A = 22018 - 1
\(\Rightarrow\)A = B = 22018 - 1
a: Ta có: \(A=2018^2-2017^2=2018+2017\)
\(B=2017^2-2016^2=2017+2016\)
mà 2018>2016
nên A>B
Ta có :
\(2A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1< 2^{2018}=B\)
Vậy A<B
Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)
Vậy A<B
\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)
\(b)A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)
\(A=2^{2018}-1\)
...
Rồi còn khúc để bạn so sánh đó
Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)
Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)
\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)
Vậy A<B
\(A=2^0+2^1+2^2+...+2^{2017}\)
\(=2A=2^1+2^2+2^3+...+2^{2018}\)
\(=2A-A=\left(2^1+2^2+2^3+...+2^{2018}\right)-\left(2^0+2^1+2^2+...+2^{2017}\right)\)
\(=A=2^1+2^2+2^3+...+2^{2018}-2^0-2^1-2^2-...-2^{2017}\)
\(\Leftrightarrow A=2^{2018}-2^0\)
\(\Leftrightarrow A>B\)