Cho tam giác ABC có H,K là trung điểm của BC,AC. Trên AB lấy M tùy ý sao cho M khác trung điểm của AB. Tia Mh,Mk cắt BC, AC tại E,F. HK cắt EF ở G. chứng minh GE= GF
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
7 tháng 2 2016
a) sai đề rồi phải là tam giác MHB=tam giác MKC chứ!!! happy new year ^_^
SS
15 tháng 2 2016
a) Xét tam giác MHB và tam giác MKC có:
MH=HK(gt)
góc CMK= góc HMB( đối đỉnh)
BM=MC(M là trung điểm của MC)(gt)
=> tam giác MHB= tam giác MKC(c.g.c)
=> góc MHB=góc CKM
=> MK vuông góc với CK
b) Kẻ CH
Ta có: MH vuông góc với AB(gt)=> KH vuông góc với AB(1)
AC vuông góc với AB(tam giác ABC vuông tại A)(2)
Từ (1) và (2) => AC // HK(cùng vuông góc với AB)
=> góc ACH= góc CHK( so le trong)
Xét tam giác ACH vuông tại A và tam giác KHC vuông tại K có:
CH là cạnh chung
góc ACH= góc CHK(chứng minh trên)
=> Tam giác ACH= tam giác KHC( cạnh huyền góc nhọn)
Còn câu c mình chịu