K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Các bợn làm nhanh dùm mk nha. Bài kiểm tra sáng mai mình nộp rồi. Ai nhanh nhất mình tick cho nha

Y
5 tháng 2 2019

sai đề nha bn : là \(\dfrac{2}{\left(a+b\right)^{1002}}\) mới đúng

+ \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}=\dfrac{x^2+y^2}{a+b}\)

\(\Rightarrow\dfrac{bx^4+ay^4}{ab}=\dfrac{x^2+y^2}{a+b}\)

\(\Rightarrow\left(bx^4+ay^4\right)\left(a+b\right)=ab\left(x^2+y^2\right)\)\(\Rightarrow abx^4+aby^4+a^2y^4+b^2x^4=abx^2+aby^2\)

\(\Rightarrow a^2y^4+b^2x^4=abx^2\left(1-x^2\right)+aby^2\left(1-y^2\right)\)

\(\Rightarrow a^2y^4+b^2x^4=abx^2y^2+abx^2y^2\)

\(\Rightarrow\left(ay^2\right)^2+\left(bx^2\right)^2-2abx^2y^2=0\)

\(\Rightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Rightarrow ay^2-bx^2=0\Rightarrow ay^2=bx^2\)

\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\) ( tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\dfrac{x^{2004}}{a^{1002}}=\dfrac{y^{2002}}{b^{1002}}=\dfrac{1}{\left(a+b\right)^{1002}}\)

\(\Rightarrow\dfrac{x^{2004}}{a^{1002}}+\dfrac{y^{2004}}{b^{1002}}=\dfrac{2}{\left(a+b\right)^{1002}}\) ( đpcm )

7 tháng 1 2019

Hình như hơi sai đề

7 tháng 1 2019

ko đúng đấy chứ

mình nhầm :

2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0

và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )

Mà /2x-3y/2015+ (x+y+z)2014 = 0

=) x+y+z = 0 (1)

=)2x- 3y = 0

=) x+y+x =0

=) 2(x+y+x)=0

=) 2x + 2y + 2x = 0

=) 3y+2y+3y = 0

=) 7y=0 =)y=0

thay y =0 vào (1)

=) ta có : x+y+x=0

=)x+0+x = 0

=) 2x=0 =) x=0

Vậy (x,y) = (0,0)

NV
27 tháng 12 2022

1.

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)

Tương tự:

\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)

\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)

Cộng vế:

\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
27 tháng 12 2022

2.

Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)

Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)

Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)

Biến đổi giả thiết:

\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)

\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(\Rightarrow ab+bc+ca=a+b+c-1\)

BĐT cần chứng minh trở thành:

\(a^2+b^2+c^2\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)

\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at; y=bt; z=ct$. Ta có:

$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$

Mặt khác:

$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$

Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)

9 tháng 11 2021

em cảm ơn cô/thầy nhiều

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks