K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)

Nên \(\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{y}{3}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

3 tháng 4 2022

c/m phần nào

3 tháng 4 2022

giup mình phần d,e,g với ạ

Đề thiếu rồi bạn 

8 tháng 11 2021

Thiếu gì vậy bạn

 

a: Ta có: CD\(\perp\)AD(ABCD là hình vuông)
CD\(\perp\)SA(SA\(\perp\)(ABCD))

AD,SA cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

b: Ta có: BC\(\perp\)AB(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

AB,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

c: AB\(\perp\)AD(ABCD là hình vuông)

AB\(\perp\)SA(SA\(\perp\)(ABCD))

AD,SA cùng thuộc mp(SAD)

Do đó: AB\(\perp\)(SAD)

d: AD\(\perp\)AB

AD\(\perp\)SA(SA\(\perp\)(ABCD)))

SA,AB cùng thuộc  mp(SAB)

Do đó: AD\(\perp\)(SAB)

e: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

Chịu 

15 tháng 12 2021

a.Xét tam giác ABM và tam giác CDM có :

AB=CD (gt)

BM=MD(cmt)

BD cạnh chung 

=>     \(\Delta ABM=\Delta CDM\)

b.*AB//CD

Vì  \(\Delta ABM=\Delta CDM\) (cmt )

BAM=MCD( 2 góc tương ứng )

=>AB//CD 

*AB=CD

Vì \(\Delta ABM=\Delta CDM\left(cmt\right)\)

=>AB=CD ( 2 cạnh tương ứng )

.Câu d.e.f áp dụng lại như vạy , câu g thì mình lười suy nghĩ ^^

 

 

b: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng vớiΔACF

=>AB/AC=AE/AF

=>AB*AF=AC*AE

c: XétΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC