Tìm x biết \(\frac{x}{9}\)=\(\frac{8}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Lời giải: Giải phương trình với tập xác định
Tập xác định của phương trình
\(x\in\infty-\infty\)
\(\frac{19x+67}{90}=\frac{15x+83}{56}\Rightarrow\left(19x=67\right)56=90\left(15x+83\right)\)
Kết quả : \(-13\)
kq đúng nhưng mk k biết mấy cái phương trình đó vì mk mới lớp 7
\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
\(\left(\frac{x+5}{95}+1\right)+\left(\frac{x+6}{94}+1\right)+\left(\frac{x+7}{93}+1\right)+\left(\frac{x+8}{92}+1\right)+\left(\frac{x+9}{91}+1\right)=-5+5=0\)
\(\Leftrightarrow\frac{x+4}{9}+\frac{x+11}{8}+\frac{x+16}{7}+\frac{x+19}{6}=10\)
\(\Leftrightarrow\left(\frac{x+4}{9}-1\right)+\left(\frac{x+11}{8}-2\right)+\left(\frac{x+16}{7}-3\right)+\left(\frac{x+19}{6}-4\right)=0\)
\(\Leftrightarrow\frac{x+4-9}{9}+\frac{x+11-16}{8}+\frac{x+16-21}{7}+\frac{x+19-24}{6}=0\)
\(\Leftrightarrow\frac{x-5}{9}+\frac{x-5}{8}+\frac{x-5}{7}+\frac{x-5}{6}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
V...
(x+2)/17+(x+4)/15+(x+6)/13=(x+8)/11+(x+10)/9+(x+12)/7
=>(x+2+17)/17+(x+4+15)/15+(x+6+13)/13=(x+8+11)/11+(x+10+9)/9+(x+12+7)/7
=>(x+19)/17+(x+19)/15+(x+19)/13=(x+19)/11+(x+19)/9+(x+19)/7
=>(x+19)/17+(x+19)/15+(x+19)/13-(x+19)/11-(x+19)/9-(x+19)/7=0
=>(x+19)*(1/17+1/15+1/13-1/11-1/9-1/7)=0
=>x+19=0
=>x=19
áp dụng tc tỉ lệ thức ta có :
\(\Leftrightarrow\frac{671x+2804}{3315}=\frac{239x+2462}{693}\Rightarrow\left(671x+2804\right)693=3315\left(239x+2462\right)\)
=>(671x+2804)693=693(671x+2804) (VT)
<=>693(671x+2804)=3315(239x+2462)
=>465003x+1943172=792285x+8161530
=>-327282x=621835
=>x=621835:(-327282)
=>x=-19
\(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+\frac{x}{28}+\frac{x}{39}=\frac{8}{9}.\)
\(\Rightarrow x.\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{39}\right)=\frac{8}{9}\)
\(\Rightarrow x.\frac{23}{52}=\frac{8}{9}\)
\(\Rightarrow x=\frac{426}{207}\)
Study well
\(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+\frac{x}{28}+\frac{x}{39}=\frac{8}{9}\)
<=> x\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{x}{39}\right)=\frac{8}{9}\)
<=> x = \(\frac{8}{9}:\frac{23}{52}\)
<=> x = \(\frac{416}{207}\)
ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)
ta gọi B là biểu thức thứ2
\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)
\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)
\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)
\(\Rightarrow x=1\)
mk nghĩ vậy bạn ạ, mk mong nó đúng
\(\frac{x}{9}=\frac{8}{6}\Rightarrow\frac{x}{9}=\frac{4}{3}\Rightarrow x.3=9.4\Rightarrow x.3=36\Rightarrow x=36:3\Rightarrow x=12\)