Giải tam giác ABC vuông có Â=90 độ
AC=5 , ∠B=35 độ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB=AC(gt)
=> Tg ABC cân tại A
Mà \(\widehat{A}=90^o\)
=> Tg ABC vuông cân tại A
#H
Bài 2:
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
góc C = 90-55=35 độ
a=20cm=BC
=>AC=sin(55).BC=sin(55).20=16.383 cm ( tam giác ABC vuông áp dụng lượng giác)
=> AB=cos (55). BC=cos(55).20=11.471 cm (tam giác ABC vuông áp dụng hệ thức lượng)
a) Áp dụng định lý Py-tago ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{15^2-10^2}=5\sqrt{5}\left(cm\right)\)
b) Áp dụng định lý Py-tago ta có:
\(BC^2=AC^2+AB^2\)
\(\Rightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+7^2}=\sqrt{193}\left(cm\right)\)
c) Ta có: \(cosB=\dfrac{AB}{BC}\)
\(\Rightarrow BC=\dfrac{AB}{cosB}=\dfrac{7}{cos50^o}\approx11\left(cm\right)\)
Áp dụng định lý Py-tago ta có:
\(AC^2=BC^2-AB^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{11^2-7^2}=6\sqrt{2}\left(cm\right)\)
d) Ta có:
\(\widehat{B}+\widehat{C}=90^o\Rightarrow\widehat{B}=90^o-65=25^o\)
Mà: \(sinB=\dfrac{AC}{BC}\)
\(\Rightarrow AC=sinB\cdot BC=sin25^o\cdot10\approx4\left(cm\right)\)
Áp dụng định lý Py-tago ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-4^2}=2\sqrt{21}\left(cm\right)\)
\(\widehat{C}=90^0-35^0=55^0\)
XétΔABC vuông tại A có
\(AC=BC\cdot\sin B\)
nên \(BC=\dfrac{5}{\sin35^0}\simeq8.72\left(cm\right)\)
\(AB=\sqrt{8.72^2-5^2}=7.14\left(cm\right)\)