timg n thuộc z biết
10n\(^2\)+n\(^{-10}\) chia hết cho n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)
Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)
Gọi thương của phép chia này là A (A nguyên), thì ta có
\(\frac{10n^2+n-10}{n-1}=10n+11+\frac{1}{n-1}\)
Để A nguyên thì n - 1 phải là ước của 1 hay (n - 1) = (1, -1)
=> n = (2, 0)
Câu còn lại tương tự
Cho tâm giac ABC vương tại A đường trung tuyến Âm . Gọi I là trung điểm AC ,K là điểm đối xứng vs H qua AC chứng minh:
a)D đối xứng E qua A
B) tâm GIAC DHE vuông
c)tu giác BDEC là hình thang vuông
D)BC=BD+CE
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
CMR:
a) n5 - n chia hết cho 30 với n thuộc N
b) n4-10n2 + 9 chia hết cho 384 với mọi n lẻ, n thuộc Z
a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:
\(n^5-n⋮5\)(vì 5 là số nguyên tố)
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)
Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)
Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
mà \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)
và ƯCLN(2;3)=1
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)
hay \(n^5-n⋮6\)
mà \(n^5-n⋮5\)(cmt)
và ƯCLN(6;5)=1
nên \(n^5-n⋮6\cdot5\)
hay \(n^5-n⋮30\)(đpcm)
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b