ĐKXĐ: \(x>0;x\ne4\)
B = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
tìm x để : \(3B>\) \(\sqrt{x}+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-3}{\sqrt{x}+3}< \dfrac{1}{2}\)
\(\Leftrightarrow-6< \sqrt{x}+3\Leftrightarrow\sqrt{x}>-9\left(đúng\forall x\right)\)
Vậy \(x\in Z^+,x\ne9\)
Uhm cảm ơn bạn nhưng mình không hiểu tại sao máy lại ra thế này:<
Nếu mình nhớ không nhầm thì chúng ta không nhân chéo được đúng khôm ạ:33? Hay thêm trường hợp x khác 0 ạ @_@?
\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)
Vì \(x\le3\Rightarrow\dfrac{2}{\sqrt{x}}\ge\dfrac{2}{\sqrt{3}}\)\(\Leftrightarrow-\dfrac{2}{\sqrt{x}}\le-\dfrac{2}{\sqrt{3}}\)\(\Leftrightarrow1-\dfrac{2}{\sqrt{3}}\le1-\dfrac{2}{\sqrt{3}}\)
\(\Rightarrow\)\(P\le\dfrac{3-2\sqrt{3}}{3}\)
Dấu = xra khi x=3
Vậy \(P_{max}=\dfrac{3-2\sqrt{3}}{3}\)
Với \(x>0;x\ne1\) thì biểu thức này ko tồn tại cả GTNN lẫn GTLN
\(B=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1\ge2\sqrt{\dfrac{\sqrt{x}}{\sqrt{x}}}-1=1\)
Dấu "=" không xảy ra (do \(x\ne1\) ) nên \(B>1\)
Biểu thức này không có GTLN vì nếu cho x > 1 và \(x\rightarrow1\Rightarrow\dfrac{1}{\sqrt{x}-1}\rightarrow\infty\).
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
Ta có: \(3\cdot B>\sqrt{x}+2\)
\(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}-2}-\dfrac{x-4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-x+4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{x-3\sqrt{x}-4}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow4< x\le16\)