chứng minh rằng n^2 -5n-49 không chia hết cho 196
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+5n+15⋮49\)
\(\Rightarrow n^2+5n+15⋮7\)
\(\Leftrightarrow n^2-2n+1=\left(n-1\right)^2⋮7\)
\(\Leftrightarrow n-1⋮7\)
\(\Leftrightarrow n=7k+1,k\inℕ\).
\(n^2+5n+15=\left(7k+1\right)^2+5\left(7k+1\right)+15\)
\(=49k^2+49k+6⋮̸49\).
Ta có đpcm.
a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)
*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)
\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)
Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9
*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3
Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9
Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)
b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)
*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)
\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)
Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169
*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13
Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169
Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)
a) G/s phản chứng \(n^2+7n+22⋮9\)
=> \(n^2+4n+4+\left(3n+18\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)
=> \(\left(n+2\right)^2⋮3\)
=> \(\left(n+2\right)^2⋮9\)
Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\)
=> \(3n⋮9\)
=> \(n⋮3\)
Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3
=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9
=> Điều giả sử là sai
=> TA CÓ ĐPCM
giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
day nay BPN
Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5)
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25
mâu thuẫn => điều g/s sai => dpcm
^^
\(b=\left(n^2-n\right)\left(n+1\right)\)
\(=\left(n\cdot n-n\cdot1\right)\left(n+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!\)
=>b chia hết cho 6
\(c=5n^2+5n\)
\(=5n\cdot n+5n\cdot1\)
\(=5n\left(n+1\right)\)
n;n+1 là hai số nguyên liên tiếp
=>\(n\left(n+1\right)⋮2\)
=>\(c=5\cdot n\cdot\left(n+1\right)⋮5\cdot2=10\)