cmr
A =10n+18n-1 chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^n+18n-1=\left(10^n-1\right)+18n=99...999+18n\) (n chữ số 9)
= 9.(11...111 + 2n) (n chữ số 1)
Đặt x = 11...111 + 2n (n chữ số 1)
=> x = 11...111 - n + 3n
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các
chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => x chia hết cho 3
=> 9.x chia hết cho 27
Vậy 10^n + 18n - 1 chia hết cho 27 (đpcm).
Ta có :
10n+18n-1 = (999999...9999+2)+18n-1 [ n chữ số 9 ]
=99999...999 +18n [ n chữ số 9 ]
=9.(1111....111) +9.2n [ n chữ số 1 ]
= 9.(1111...11 +2n ) chia hết cho 9 [ n chữ số 1 ]
= 9.(111...1-2+3n) [ n chữ số 1 ]
Nhận xét : Số 1...1 và n là hai số chia cho 3 có cùng số dư do đó :
111...111 -n chia hết cho 3 [ n chữ số 1 ]
mà 3n chia hết cho 3
(111...111 -2+3n ) chia hết cho 3
Mà : 9.(1111...1 -2+3n ) chia hết cho 27
vậy 10n+18n-1 chia hết cho 27
( đ.p.c.m )
a,\(10^n+18n-1\)
\(=99...9+18n\)(n-1 chữ số 9)
Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)
\(\Rightarrow999..9+18n⋮\left(3.9\right)\)
\(\Rightarrow10^n+18n-1⋮27\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
1
ta có 72=9,8 và UCLN(8,9)=1
SUY RA x269y chia hết 8 suy ra 69y cia hết cho 8 nên y = 6
nếu y=6 ta có x2696 chia hết cho 9 suy ra x+23 chia hết cho 9 mà 0<x<9 nên x=4
vậy x=4 và y=6
2
a, do 10 là số chăn nên nâng mũ mấy lên cũng là số chẵn suy 10 ^2002 chia hết co 2
ta có 2^2002 =100...00 suy 1 ko chia hết cho 3 nên 10^2002 ko chia hết cho 3
b, ta có 10^2017 +1=100..00 +1 suy ra 2 ko chia hết cho 9
mấy bài còn lại cux dễ tự làm đi nha lê
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Chứng minh J = 10 n + 18 n − 1 chia hết cho 9. Bước 2. Chứng minh J = 10 n + 18 n − 1 chia hết cho 3. |
Ta có: J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n => J chia hết cho 9. +) Chứng minh 11...1 + 2 n ⋮ 3 . Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n . Suy ra 11...1 và n có cùng số dư trong phép chia cho 3. => 11...1-n chia hết cho 3. => (11...1+2n) ⋮ 3
⇒
J
⋮
27
|
cho A = 10n+18n-1 chia hết cho 27
suy ra 10n+18n-1 chia hết cho 27
suy ra n=1
giả sử \(10^n+18n-1⋮27\)
\(\Rightarrow10^n-1+18n⋮27\)
\(\Rightarrow999...9\) (n số 9) \(+18n⋮27\)
\(\Rightarrow9\left(111...1+2n\right)⋮27\)
\(\Rightarrow111...1+2n⋮3\)
ta có tổng các số của 111...1 (n số 1) bằng n và 2n có tổng các số là số dư khi 2n : 9. gọi số dư đó là \(k\Rightarrow2n=3x+2k\) \(\left(x\in N\right)\)
ta có: 111...1 = 3y + k \(\left(x\in N\right)\)
\(\Rightarrow2n+111...1=3\left(x+y\right)+3k=3\left(x+y+k\right)\)
\(\Rightarrow2n+111...1⋮3\)
\(\Rightarrow10^n+18n-9⋮27\) (đpcm)