a) (2x - 3)2 = 16
b) (7x + 2)-1 = 3-2
c) (3 . x - 2)5 = -243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(2x-3)2=16
=>2x-3=4 hoặc 2x-3=-4
<=>2x=7 hoặc 2x=-1
<=>x=7/2 hoặc x=-1/2
b)(3x-2)5=243=35
=>3x-2=3
=>3x=5
=>x=5/3
c)(7x+2)-1=52
<=>\(\frac{1}{7x+2}=25\)
<=>25(7x+2)=1
<=>175x+50=1
<=>175x=-49
<=>x=-49:175
<=>x=-7/25
d)(x-3/4)4=81=34=(-3)4
=>x-3/4=3 hoặc x-3/4=-3
<=>x=3+3/4 hoặc x=-3+3/4
<=>x=15/4 hoặc x=-9/4
a) \(\left(2x-3\right)^2=16\)
\(\left(2x-3\right)^2=4^2\)
\(2x-3=4\)
\(2x=7\)
\(x=\dfrac{7}{2}=3,5\)
b) \(\left(3x-2\right)^5=-243\)
\(\left(3x-2\right)^5=-3^5\)
\(3x-2=-3\)
\(3x=-1\)
\(3x=-\dfrac{1}{3}\)
c) \(\left(x-7\right)^{x+1}=\left(x-7\right)^{x+11}\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}\times\left[1-\left(x-7\right)^{10}\right]=0\)
\(\left(x-7\right)^{x+1}=0\) ; \(1-\left(x-7\right)^{10}=0\)
\(x-7=0;\left(x-7\right)^{10}=1\)
\(x=7;\left(x-7=1;x-7=-1\right)\)
\(x=7;x=8;x=6\)
a, (2\(x\) - 3)2 = 16
\(\left[{}\begin{matrix}2x-3=-4\\2x-3=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-1\\2x=7\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(x\in\){ - \(\dfrac{1}{2}\); \(\dfrac{7}{2}\)}
b, (3\(x\) - 2)5 = -243
( 3\(x\) - 2)5 = (-3)5
3\(x\) - 2 = -3
3 \(x\) = -1
\(x\) = - \(\dfrac{1}{3}\)
Vậy \(x\) = -\(\dfrac{1}{3}\)
c, \(\left(x-7\right)\)\(x+1\) = (\(x-7\))\(x+11\)
(\(x-7\))\(^{x+1}\).( \(\left(x-7\right)^{10}\) - 1 ) = 0
\(\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x-7=-1\\x-7=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x=6\\x=8\end{matrix}\right.\)
Vậy \(x\in\){ 6; 7; 8}
\(a\)\(,\)\(\left(2x-3\right)^2\)\(=\)\(4^2\)(1)
mà ta có \(4^2\)=\(\left(-4\right)^2\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\left(2x-3\right)^2\)=\(4^2\)=\(\left(-4\right)^2\)
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)(thỏa mãn \(x\)\(\in\)\(Q\))
Vậy \(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)
\(b,\)\(\left(3x-2\right)^5\)\(=\)\(-243\)
\(\Rightarrow\)\(\left(3x-2\right)^5\)\(=\)\(\left(-3\right)^5\)
\(\Rightarrow\)\(3x-2=-3\)
\(\Rightarrow\)\(3x=-1\)
\(\Rightarrow\)\(x=\frac{-1}{3}\)(thỏa mãn \(x\in Q\))
Vậy \(x=\frac{-1}{3}\)
\(c,\)\(\left(7x+2\right)^{-1}=3^{-2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{3^2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{9}\)
\(\Rightarrow\)\(7x+2=9\)
\(\Rightarrow\)\(7x=7\)
\(\Rightarrow x=1\)(thỏa mãn \(x\in Q\))
Vậy \(x=1\)
A,\(\left(2x-3\right)^2=4^2\)
\(2x-3=4\)
\(2x=7\)
\(x=3,5\)
Tương tự
a) 2x = 16 b) 3x + 1 = 9x
2x = 24 3x + 1 = 32x
x = 4 x + 1 = 2x
x = 1
c) 23x + 2 = 4x + 2
23x + 2 = 22(x + 2)
3x + 2 = 2(x + 2)
3x + 2 = 2x + 4
x = 2
d) 32x - 1 = 243
32x - 1 = 35
2x - 1 = 5
2x = 6
x = 3
c , d giải nốt:
c) 2x + 3/6 = 7x - 13/15
=> (2x + 3) . 15 = (7x - 13) x 6
=> 30x +45 = 42x - 78
=> 30x - 42x = -78 - 45
=> -12x = -123
=> x = 41/4
d) 2-x/4 = 3x - 1/ - 3
=> (2-x) . -3 = 4. (3x - 1)
=> -6 - (-3x) = 12x - 4
(-6) + 4 = 12x - - (-3x)
=> -2 = 9x
=> x = -2/9
a) (2x - 3)2 = 16
=> (2x - 3)2 = 42
=> 2x - 3 = \(\pm\) 4
TH1: 2x - 3 = 4
=> 2x = 4 + 3
=> 2x = 7
=> x = \(\dfrac{7}{2}\)
TH2: 2x - 3 = -4
=> 2x = -4 + 3
=> 2x = -1
=> x = \(\dfrac{-1}{2}\)
Vậy x= \(\dfrac{7}{2}\) ; x = \(\dfrac{-1}{2}\)
b) (7x + 2)-1 =3-2
=> \(\dfrac{1}{7x+2}\) = \(\dfrac{1}{9}\)
=> 7x + 2 = 9
=> 7x = 9 - 2
=> 7x = 7
=> x = 1