cho tam giác ABC , M là điểm thỏa mãn\(\overrightarrow{|2MA}+\overrightarrow{MB|}=\overrightarrow{|4MB}-\overrightarrow{MC}|\)
Tìm tập hợp các điểm M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MC}=-\overrightarrow{MB}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{BM}\)
Vậy M là điểm sao cho tứ giác ACBM là hình bình hành.
d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)
Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)
\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)
\(\Rightarrow4MP=0\Rightarrow M\equiv P\)
Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC
a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)
\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)
\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC
b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)
\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)
\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)
1.
Lấy điểm A' đối xứng với A qua Ox \(\Rightarrow A\left(-2;-1\right)\)
M có tọa độ \(M\left(x;0\right)\)
Ta có \(AM+MB=A'M+MB\ge AB=\sqrt{4^2+5^2}=\sqrt{41}\)
\(min=41\Leftrightarrow M,A',B\) thẳng hàng
\(\Leftrightarrow\overrightarrow{A'M}=k\overrightarrow{A'B}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=k.4\\1=k.5\end{matrix}\right.\Rightarrow x=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};0\right)\)
2.
Gọi N là trung điểm BC
\(\overrightarrow{MA}.\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
\(\Leftrightarrow2\overrightarrow{MA}.\overrightarrow{MN}=0\)
\(\Leftrightarrow2MA.MN.cosAMN=0\)
\(\Leftrightarrow\left[{}\begin{matrix}MA=0\\MN=0\\cosAMN=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}M\equiv A\\M\equiv N\\\widehat{AMN}=90^o\end{matrix}\right.\)
\(\Rightarrow M\) thuộc đường tròn đường kính AN
a) Ta có \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\overrightarrow{MA}+\overrightarrow{BC}\) = \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}\)
⇒\(\left|\overrightarrow{MG}\right|=\left|\overrightarrow{BA}\right|\)
⇒ M là điểm trên đường tròn tâm G bk là AB
Gọi G là trọng tâm của tam giác ABC, I là trung điểm BC.
Dễ dàng chứng minh \(\left\{{}\begin{matrix}\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\\\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\end{matrix}\right.\)
Kết hợp điều kiện đề bài, ta có \(MG=MI\). Do đó M nằm trên đường trung trực của GI (cố định).
Vậy tập hợp điểm M thoả điều kiện đề bài là trung trực của đoạn GI.
Gt ⇒ \(2\left|\overrightarrow{MC}+\overrightarrow{MA}+\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Do G là trọng tâm của ΔABC
⇒ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
⇒ VT = 6MG
I là trung điểm của BC
⇒ \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\)
⇒ VP = 6MI
Khi VT = VP thì MG = MI
Vậy tập hợp các điểm M thỏa mãn ycbt là đường trung trực của đoạn thẳng IG
Lời giải:
a.
\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)
Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$
b. Gọi $I$ là trung điểm $AB$. Khi đó:
\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)
\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)
\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)
Vậy điểm $M$ là trung điểm của $AB$
c.
Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$
\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)
\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)
\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)
\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)
\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)
Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$
Lời giải:
Ta có:
\(|2\overrightarrow{MA}+\overrightarrow{MB}|=|4\overrightarrow{MB}-\overrightarrow{MC}|\)
\(\Leftrightarrow |2\overrightarrow{MA}+\overrightarrow{MB}|=|3\overrightarrow{MB}+\overrightarrow{MB}-\overrightarrow{MC}|=|3\overrightarrow{MB}+\overrightarrow{CB}|\) (1)
Lấy điểm $I$ sao cho \(2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)
Lấy điểm \(J\) sao cho \(3\overrightarrow{JB}+\overrightarrow{CB}=\overrightarrow{0}\)
Khi đó:
\((1)\Leftrightarrow |2(\overrightarrow{MI}+\overrightarrow{IA})+\overrightarrow{MI}+\overrightarrow{IB}|=|3(\overrightarrow{MJ}+\overrightarrow{JB})+\overrightarrow{CB}|\)
\(\Leftrightarrow |3\overrightarrow{MI}|=|3\overrightarrow{MJ}|\Leftrightarrow |\overrightarrow{MI}|=|\overrightarrow{MJ}|\)
Do đó tập hợp điểm M nằm trên đường trung trực của IJ, trong đó $I$ là điểm nằm giữa $AB$ sao cho \(IA=\frac{1}{2}IB\); $J$ là điểm nằm trên đường thẳng $BC$ sao cho $B$ nằm giữa $J$ và $C$ và \(JB=\frac{BC}{3}\)
Trước hết ta tìm điểm I sao cho \(2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\).
Nếu \(2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\) \(\Leftrightarrow\overrightarrow{IA}=-\dfrac{1}{2}\overrightarrow{IB}\).
Vậy điểm I sao cho I thuộc đoạn AB và \(IA=\dfrac{1}{2}IB\).
Ta cũng tìm điểm K sao cho:\(4\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{0}\)
Nếu:
\(4\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{0}\)
\(\Leftrightarrow4\overrightarrow{KB}+\overrightarrow{CK}=\overrightarrow{0}\)\(\Leftrightarrow3\overrightarrow{KB}+\overrightarrow{CK}+\overrightarrow{KB}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{KB}+\overrightarrow{CB}=\overrightarrow{0}\)\(\Leftrightarrow3\overrightarrow{KB}=\overrightarrow{BC}\)\(\Leftrightarrow\overrightarrow{KB}=\dfrac{1}{3}\overrightarrow{BC}\).
Vậy điểm K thuộc đường thẳng BC sao cho B nằm giữa K và C và \(KB=\dfrac{1}{3}BC\).
Bây giờ:
\(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|4\overrightarrow{MK}-\overrightarrow{MK}\right|\)
\(\Leftrightarrow3\left|\overrightarrow{MI}\right|=3\left|\overrightarrow{MK}\right|\)
\(\Leftrightarrow3.MI=3.MK\)
\(\Leftrightarrow MI=MK\).
Vậy điểm M nằm trên đường trung trực của IK.