K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

bn có viết nhầm 5xy thành 4xy ko

19 tháng 3 2018

Ta có :

\(2x^2+2y^2=5xy\)

\(\Rightarrow2x^2+2y^2-5xy=0\)

\(\Rightarrow\left(2x^2-4xy\right)+\left(2y^2-xy\right)=0\)

\(\Rightarrow2x\left(x-2y\right)+y\left(2y-x\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(2x-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2y\\2x=y\end{matrix}\right.\)

*) Với \(x=2y\) ta có:

\(M=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\)

*) Với \(2x=y\) ta có:

\(M=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\)

Vậy \(M=3\) hoặc \(M=-3\)

2x2 + 2y2 = 5xy

=> 2x2 + 2y2 - 5xy = 0

=> (x - 2y)(2x - y)   = 0 

x = 2y (loại)

y = 2x

E = \(\dfrac{x+2x}{x-2x}\)=-3

4 tháng 4 2022

\(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)

AD t/c của dãy tỉ số bằng nhâu ta có

\(\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{32+32-75}=\dfrac{-100}{-11}=\dfrac{100}{11}\)

\(=>\left[{}\begin{matrix}x=\dfrac{400}{11}\\y=\dfrac{400}{11}\\z=\dfrac{500}{11}\end{matrix}\right.\)

4 tháng 4 2022

lần đầu thấy tự làm nha:))

NV
7 tháng 2 2021

\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))

\(\Leftrightarrow x=2y\)

\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)

26 tháng 9 2021

\(x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)+10=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10=5^3-2.5^2+3.5+10=100\)

12 tháng 7 2021

undefined

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Biểu thức này không có giá trị cụ thể. Bạn xem lại đề.

16 tháng 3 2022

-2\(x^2+xy^2\)        (\(xy^2\) là \(1xy^2\) )        

=(\(-2+1\))  (\(x^2.x\)) . \(y^2\)          (Ta nhân số theo số và phần biến theo phần biến)

= -1\(x^3y^2\) 

Tại \(x\)= -1 ; \(y\) = - 4  ta có

-1.(-1)\(^3\).(-4)\(^2\)= -1.(-1). 16 = 16 

Vậy tại x= -1 ; y = - 4 biểu thức -2\(x^2+xy^2\) là 16

 

 

\(-x^2y+2y^2\)               (\(-x^2y\) là \(-1x^2y\))

= (-1+2). \(x^2.\left(y.y^2\right)\)

= 1\(x^2y^3\)

Tại  x= 0 ; y = - 2 ta có 

1.\(\left(0\right)^2.\left(-2\right)^3\)= 1. 0. -8 = 0                  (0 nhân với số nào cũng bằng 0)

Vậy tại x= 0 ; y = - 2 biểu thức \(-x^2y+2y^2\) là 0

NHỮNG CHỖ NÀO CÓ IN ĐẬM VÀ NGHIÊNG LÀ KHÔNG GHI NHA

 

16 tháng 3 2022

bạn giải chi tiết xíu nữa đc kh ạ

làm hai câu hộ mình nha mình cảm ơn