tính giá trị của phân thức M = \(\dfrac{5x-4y}{5x+4y}\) biết rằng 25x^2 + 16y^2 = 41xy và 4y<5x<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\dfrac{5x-4y}{5x+4y}\)
\(\Leftrightarrow P^2=\left(\dfrac{5x-4y}{5x+4y}\right)^2\)
\(\Leftrightarrow P^2=\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)
\(\Leftrightarrow P^2=\dfrac{\left(5x\right)^2-2\cdot5x\cdot4y+\left(4y\right)^2}{\left(5x\right)^2+2\cdot5x\cdot4y+\left(4y\right)^2}\)
\(\Leftrightarrow P^2=\dfrac{\left(25x^2+16y^2\right)-40xy}{\left(25x^2+16y^2\right)+40xy}\)
Thay \(25x^2+16y^2=50xy\) vào ta có:
\(P^2=\dfrac{50xy-40xy}{50xy+40xy}=\dfrac{10xy}{90xy}=\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2\)
Mà: \(4y< 5x< 0\)
Nên: \(P=\dfrac{5x-4y}{5x+4y}< 0\)
Vậy: \(P=-\dfrac{1}{3}\)
25x^2+16y^2=50xy
=>25x^2-50xy+16y^2=0
=>25x^2-10xy-40xy+16y^2=0
=>5x(5x-2y)-8y(5x-2y)=0
=>(5x-2y)(5x-8y)=0
=>5x=2y hoặc 5x=8y
5x>4y
=>5x=8y
=>x/8=y/5=k
=>x=8k; y=5k
\(P=\dfrac{5\cdot8k-4\cdot5k}{5\cdot8k+4\cdot5k}=\dfrac{40-20}{40+20}=\dfrac{1}{3}\)
Ta có: \(A^2=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}\)
\(=\dfrac{9x^2+4x^2-12xy}{9x^2+4x^2+12xy}\)
\(=\dfrac{20xy-12xy}{20x^2+12xy}\)
\(=\dfrac{8xy}{32xy}=\dfrac{1}{4}\)
\(\Leftrightarrow A\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)(1)
Vì 2y<3x<0 nên 3x-2y>0 và 3x+2y<0
hay \(A=\dfrac{3x-2y}{3x+2y}< 0\)(2)
Từ (1) và (2) suy ra \(A=-\dfrac{1}{2}\)
Vậy: \(A=-\dfrac{1}{2}\)
Ta có : M\(^2\)= (\(\dfrac{5x-4y}{5x+4y}\))\(^2\) = \(\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)= \(\dfrac{25x^2+16y^2-40xy}{25x^2+16y^2+40xy}\)
= \(\dfrac{41xy-40xy}{41xy+40xy}=\dfrac{xy}{81xy}=\dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)
Mà 4y < 5x < 0 \(\Rightarrow\)5x - 4y > 0 . 5x +4y < 0 \(\Rightarrow\) M < 0
Vậy M = - \(\dfrac{1}{9}\)