K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

Xét hiệu:

\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{4}{x+y}=\dfrac{xy+y^2+x^2+xy-4xy}{xy\left(x+y\right)}=\dfrac{x^2+y^2-2xy}{xy\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\RightarrowĐPCM\)

19 tháng 7 2023

42 : x + 36 : x = 6

19 tháng 7 2023

TH1

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6

6 tháng 3 2016

giup gi giup gi

6 tháng 3 2016

giúp gì vậy?

17 tháng 2 2019

Áp dụng bất đẳng thức Cauchy-Schwartz, ta có:  \(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\ge\frac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}=\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)

Dấu "=" xảy ra khi: \(\frac{1}{2a+b}=\frac{1}{2b+c}=\frac{1}{2c+a}\Leftrightarrow2a+b=2b+c=2c+a\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Bạn vui lòng chỉ post 1 bài 1 lần thôi. Đăng nhiều làm loãng box toán đó bạn. 

 

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:

Gọi biểu thức đã cho là $A$.

CM vế 1:

Ta có:

$\frac{a+b}{a+b+c}> \frac{a+b}{a+b+c+d}$

$\frac{b+c}{b+c+d}> \frac{b+c}{a+b+c+d}$

$\frac{c+d}{c+d+a}> \frac{c+d}{a+b+c+d}$

$\frac{d+a}{d+a+b}> \frac{d+a}{a+b+c+d}$

Cộng lại: $A> \frac{2(a+b+c+d)}{a+b+c+d}=2>1$

CM vế 2:

Ta thấy $\frac{a+b}{a+b+c}-\frac{a+b+d}{a+b+c+d}=\frac{-cd}{(a+b+c)(a+b+c+d)}< 0$ với $a,b,c,d>0$

$\Rightarrow \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}$

Hoàn toàn tương tự với các phân thức còn lại:

$\Rightarrow A< \frac{3(a+b+c+d)}{a+b+c+d}=3$

Ta có đpcm.