K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAED và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

\(\widehat{EAD}=\widehat{CAB}\)

Do đó: ΔAED\(\sim\)ΔACB

Suy ra: \(\widehat{AED}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà EC=BD

nên BEDC là hình thang cân

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC

5 tháng 9 2017

1,

A D C B 1 2 E 6 1 2

a, Áp dụng định lý Pi-ta-go vào \(\Delta ABC\)

\(BC=\sqrt{8^2+6^2}\)

       \(=10cm\)

b, Xét chung \(\Delta BEC\)và \(\Delta DEC\)

                     \(EC\)chung 

                   \(BC=CD\hept{\begin{cases}\Delta BEC\\\Delta DEC\end{cases}}\)

                  \(G=\widehat{G}\)

\(\Delta ABC\)và \(\Delta ACD\)có \(\widehat{A_1}=\widehat{A_2};AB=AD;AC\)chung

\(\Rightarrow\Delta ABC=\Delta ACD\Rightarrow BC=CD;\widehat{G}=\widehat{G_2}\)

P/s: Dựa vào đây mà làm

a: BC=10cm

b: Xét ΔEDB có

EA là đường cao

EA là đường trung tuyến

Do đó: ΔEDB cân tại E

Xét ΔCDB có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCDB cân tại C

Xét ΔBEC và ΔDEC có

BE=DE

EC chung

BC=DC

Do đó: ΔBEC=ΔDEC