Bai 1: cho a/b = c/d chung minh rang:
a2- b2/ c2- b2 = ab/cd
Giup mk vs ti nua mk nop r!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)
CẦn chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm
2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1
BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z
<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà )
<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0
<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM
Dấu = xảy ra <=> x = y = z <=> a = b = c
Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c
- - - - - - - - - - - - -- - - - - -
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(\Rightarrow\frac{a^2}{b^2}-1=\frac{c^2}{d^2}-1\)
\(\Leftrightarrow\frac{a^2-b^2}{b^2}=\frac{c^2-d^2}{d^2}\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{b^2}{d^2}\left(1\right)\)
Ta lại có :\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ab}{b^2}=\frac{cd}{d^2}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
Có: \(8\left(a^2+b^2\right)=\left(2a+2b\right)^2\)
\(\Leftrightarrow8a^2+8b^2=4a^2+8ab+4b^2\)
\(\Leftrightarrow4a^2-8ab+4b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)
=> đpcm
8(a2+b2) = (2a + 2b)2
=>8a2+8b2= 4a2 + 8ab + 4b
=> 4a2 + 4b2 = 8ab
=> 4a2 + 4b2 - 8ab = 0
=> (2a - 2b)2 =0
=> 2a - 2b = 0
=> 2(a-b)=0
=>a-b=0
=> a=b
Ta có \(\frac{x}{y}< \frac{x+m}{y+m}\)khi 0<x<y,m>0
Áp dụng ta được
\(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
\(\frac{b+c}{b+c+d}< \frac{a+b+c}{a+b+c+d}\)
....................................................
Khi đó
\(VT< \frac{a+b+d+a+b+c+c+d+b+d+a+c}{a+b+c+d}=3\)
Vậy VT<3
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)