K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

4 tháng 4 2016

1)a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm

2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1 

BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z 

<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà ) 

<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0 

<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM 

Dấu = xảy ra <=> x = y = z <=> a = b = c 

Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c 

- - - - - - - - - - - - -- - - - - -

16 tháng 7 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(\Rightarrow\frac{a^2}{b^2}-1=\frac{c^2}{d^2}-1\)

\(\Leftrightarrow\frac{a^2-b^2}{b^2}=\frac{c^2-d^2}{d^2}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{b^2}{d^2}\left(1\right)\)

Ta lại có :\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ab}{b^2}=\frac{cd}{d^2}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)

11 tháng 12 2016

Có: \(8\left(a^2+b^2\right)=\left(2a+2b\right)^2\)

\(\Leftrightarrow8a^2+8b^2=4a^2+8ab+4b^2\)

\(\Leftrightarrow4a^2-8ab+4b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)

=> đpcm

11 tháng 12 2016

8(a2+b2) = (2a + 2b)2

=>8a2+8b2= 4a2 + 8ab + 4b

=> 4a2 + 4b2 = 8ab

=> 4a2 + 4b2 - 8ab = 0

=> (2a - 2b)2 =0

=> 2a - 2b = 0

=> 2(a-b)=0

=>a-b=0

=> a=b

 

23 tháng 5 2019

Ta có \(\frac{x}{y}< \frac{x+m}{y+m}\)khi 0<x<y,m>0

Áp dụng ta được

\(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)

\(\frac{b+c}{b+c+d}< \frac{a+b+c}{a+b+c+d}\)

....................................................

Khi đó

\(VT< \frac{a+b+d+a+b+c+c+d+b+d+a+c}{a+b+c+d}=3\)

Vậy VT<3