K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

\(A=\frac{\sqrt{x}+1+x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\ge1+2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}=1+2=3\)

dấu "=" xảy ra khi và chỉ khi \(x=1\)

\(MIN:A=3\)

29 tháng 8 2021

Bạn dùng Cosi à bạn

20 tháng 9 2018

Ai trả lời nhanh và chính xác mình k

olm-logo.png

17 tháng 9 2018

Chào em, em có thể kam khảo tại link:

Câu hỏi của Lê Thu Hà - Toán lớp 9 - Học toán với OnlineMath

Nếu link bị chặn em copy và dán tại:

https://olm.vn/hoi-dap/question/1261852.html

Câu hỏi của Lê Thu Hà - Toán lớp 9 - Học toán với OnlineMath

17 tháng 9 2018

a) Rút gọn E

\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-\sqrt{x}}{x-\sqrt{x}}\right)\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}-\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(E=\frac{x}{\sqrt{x}-1}\)

Vậy \(E=\frac{x}{\sqrt{x}-1}\)

28 tháng 5 2023

a.

\(B=\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)+2\sqrt{x}}{1-x}=\dfrac{\sqrt{x}+1+x-\sqrt{x}+2\sqrt{x}}{1-x}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b.

\(P=\dfrac{B}{A}=\dfrac{x+3}{\sqrt{x}+1}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(x+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{x+3}{\sqrt{x}-1}=\dfrac{x-1+4}{\sqrt{x}-1}\)

\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}-1}\)\(=\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}+2\)

Theo BĐT AM - GM ta có: \(\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right)\dfrac{4}{\sqrt{x}-1}}=4\)

\(\Rightarrow\dfrac{1}{P}\ge6\Rightarrow Min_{\dfrac{1}{P}}=6\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=4\Rightarrow x=9\) (loại trường hợp \(\sqrt{x}-1=-2\))

Vậy GTNN của biểu thức \(\dfrac{1}{P}=6\) khi x = 9.

7 tháng 10 2023

Giúp mình với:https://hoc24.vn/cau-hoi/cho-p-dfracxsqrtx-1-x-1tim-gtnn-cua-p.8487145212081

 

a: M=A:B

\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)

b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)

=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)

Dấu = xảy ra khi (căn x+3)^2=16

=>căn x+3=4

=>x=1

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)

b: \P=A:B

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)

Dấu = xảy ra khi x=0

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:

$K=\frac{\sqrt{x}(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}+\frac{4}{\sqrt{x}+1}$

$=(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}-1$

$\geq 2\sqrt{4}-1=3$ (theo BĐT Cô-si)

Vậy $K_{\min}=3$. Giá trị này đạt tại $\sqrt{x}+1=2\Leftrightarrow x=1$