K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

\(A=\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\\ 5A=1+\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\\ 5A-A=\left(1+\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\\ 4A=1-\dfrac{1}{5^{2015}}\Rightarrow A=\dfrac{1-\dfrac{1}{5^{2015}}}{4}=\dfrac{1}{4}-\dfrac{4}{5^{2015}}< \dfrac{1}{4}\)

21 tháng 7 2017

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2015}}\)

\(\Rightarrow5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{2014}}\)

\(\Rightarrow5A-A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2015}}\right)\)

\(\Rightarrow4A=1-\dfrac{1}{5^{2015}}\)

\(\Rightarrow A=\dfrac{1}{4}-\dfrac{1}{5^{2015}.4}< \dfrac{1}{4}\)

\(\Rightarrowđpcm\)

21 tháng 7 2017

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\)

\(\Rightarrow5A=5\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\)

\(\Rightarrow5A=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\)

\(\Rightarrow5A-A=\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\)

\(\Rightarrow4A=1-\dfrac{1}{5^{2015}}\)

\(\Rightarrow A=\dfrac{1}{4}-\dfrac{1}{5^{2015}.4}\)

\(\Rightarrow A< \dfrac{1}{4}\)

28 tháng 2 2021

Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.

Xét:

`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`

`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`

`=>A+B>2`

Mà `1 2013/2014<2`

`=>A+B>1 2013/2014`

6 tháng 5 2022

a) \(A=2A-A\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1-\dfrac{1}{2^{2022}}\)

b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)

\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)

 

6 tháng 5 2022

a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )

21 tháng 2 2023

\(7\dfrac{4}{5}và9\dfrac{1}{2}\\ Tacó:7< 9\\ \Rightarrow7\dfrac{4}{5}< 9\dfrac{1}{2}\\ 7\dfrac{1}{6}và3\dfrac{4}{5}\\ Tacó:7>3\\ \Rightarrow7\dfrac{1}{6}>3\dfrac{4}{5}\)

Câu cuối không phải hỗn số

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Lời giải:
$M=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}$

$5M=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}$

$\Rightarrow 4M=5M-M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}$
$4M+\frac{2014}{5^{2014}}=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}$

$5(4M+\frac{2014}{5^{2014}})=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}$

$\Rightarrow 4(4M+\frac{2014}{5^{2014}})=5-\frac{1}{5^{2013}}$

$M=\frac{5}{16}-\frac{1}{16.5^{2013}-\frac{2014}{4.5^{2014}}$

16 tháng 2 2022

\(\dfrac{1}{4444}< 1,\dfrac{3}{7}< 1,\dfrac{9}{5}>1,\dfrac{7}{3}>1,\dfrac{14}{15}< 1,\dfrac{16}{16}=1,\dfrac{14}{11}>1\)

16 tháng 2 2022

:)