K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Đặt \(\sqrt{x-\dfrac{1}{x}}=a\ge0\)

\(\Rightarrow a^2x=x^2-1\) từ đây ta có

\(a^2x+2ax-3x=0\)

\(\Leftrightarrow x\left(a-1\right)\left(a+3\right)=0\)

\(\Leftrightarrow a=1\)

\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\)

\(\Leftrightarrow x^2-x-1=0\)

Tới đây thì bí :(

23 tháng 10 2017

Aki Tsuki không biết :(

14 tháng 12 2021

\(ĐK:-1\le x< 0;x\ge1\\ PT\Leftrightarrow x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\\ \Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)

Đặt \(\sqrt{x-\dfrac{1}{x}}=a\ge0\)

\(PT\Leftrightarrow a^2+2a-3=0\\ \Leftrightarrow\left(a-1\right)\left(a+3\right)=0\\ \Leftrightarrow a=1\left(a\ge0\right)\\ \Leftrightarrow x-\dfrac{1}{x}=1\\ \Leftrightarrow x^2-x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\end{matrix}\right.\)

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x>0\)

\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)

\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

18 tháng 5 2021

b)đk:\(x\ge\dfrac{1}{2}\)

Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)

\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)

=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\) 

Dấu = xảy ra\(\Leftrightarrow x=1\)

Vậy....

c) đk: \(x\ge0\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)

\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)

pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)

\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...

 

18 tháng 5 2021

a)ĐKXĐ: x≥-1/3; x≤6

<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)

(vì x≥-1/3 nên3x+1≥0 )

 

NV
21 tháng 7 2021

a. ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\-1\le x< 0\end{matrix}\right.\)

Do \(x\ne0\) nên pt tương đương:

\(x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\)

\(\Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)

Đặt \(\sqrt{x-\dfrac{1}{x}}=t\ge0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x-\dfrac{1}{x}=1\)

\(\Rightarrow x^2-x-1=0\Rightarrow x=\dfrac{1\pm\sqrt{5}}{2}\)

NV
21 tháng 7 2021

b.

ĐKXĐ: \(x\ge0\)

\(x+\sqrt{x}-\sqrt{x+3}=0\)

\(\Leftrightarrow x-1+\sqrt{x}-1-\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow x-1+\dfrac{x-1}{\sqrt{x}+1}-\dfrac{x-1}{\sqrt{x+3}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x+3}+2}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{\sqrt{x+3}+1}{\sqrt{x+3}+2}\right)=0\)

\(\Leftrightarrow x-1=0\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-12x+5=0\)

\(\Leftrightarrow...\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)

\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)

\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)

\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)

\(\Leftrightarrow3x^2-4=0\)

\(\Leftrightarrow...\)