Chứng minh rằng với mọi số nguyên a, tồn tại số nguyên b sao cho ab + 4 là số chính phương
ai đúng mik tick(phải rõ ràng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a bất kì thì ta chọn b sao cho b=a-4
Khi đó: ab+4=a(a-4)+4
=a2-4a+4
=a2-2.2.a+22
=(a-2)2
Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương
Lời giải:
Cho $b=a+4$ ta có:
$ab+4=a(a+4)+4=a^2+4a+4=(a+2)^2$ là số chính phương.
Vậy với mọi số tự nhiên $a$, tồn tại số tự nhiên $b=a+4$ để $ab+4$ luôn là số chính phương.
Đáp án: theo đề bài :
ab+4=x^2
<=>x^2-4=ab
<=>x^2-2^2=ab =>(x+2)(x-2)=ab
Với b=a+4 thì ab+4 là số chính phương.
Chứng minh: Với b=4 thì
ab+4= a(a+4) +4 =a2+4a+4=(a+2)2
Đặt ab + 4 = m22 (m ∈ N)
⇒ab = m22− 4 = (m − 2) (m + 2)
⇒b =(m−2).(m+2)a(m−2).(m+2)a
Ta có:m=a+2⇒⇒ m-2=a
⇒⇒b=a(a+4)aa(a+4)a=a+4
Vậy với mọi số tự nhiên a luôn tồn tại b = a + 4 để ab + 4 là số chính phương.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Ta có:
Giả sử: ab + 4 = A2
<=>a2 - 4 = ab
<=> A2 - 22 = ab
<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b
=> Đpcm