K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Phép nhân và phép chia các đa thức

2 tháng 1 2018

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

1 tháng 8 2016

= 4( x + 1/4)2 +1 - 1/16 >0 với mọi x

1 tháng 8 2016

\(4x^2+2x+1\)
\(=\left[\left(2x\right)^2+2.2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Có:\left(2x+\frac{1}{2}\right)^2\ge0\)\(\text{với mọi x}\)
\(\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)\(\text{với mọi x}\)
 \(\text{Vậy 4x^2}+2x+1\)\(\text{luôn dương với mọi x}\)

8 tháng 8 2017

9x2+6x+25= (3x)2+2.3x.1+1-1+25

= (3x+1)2+24

Vì (3x+1)2 luôn > hoặc = 0

Nên (3x+1)2+24 luôn > hoặc =24

Vậy GTNN của 9x2+6x+25 bằng 24 khi (3x+1)2=0

                                                              <=> x= \(\frac{-1}{3}\)

8 tháng 8 2017

Câu GTLN bạn làm tương tự câu tìm giá trị nhỏ nhất khác nhau một chút là tìm GTLN thì đặt dấu - ra ngoài

28 tháng 7 2016

Hỏi đáp Toán

17 tháng 7 2019

Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n

=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n) 

5n (n+1).(n+2)

do n (n=1) (n+2)chia hết cho 6

suy ra Achia hết cho 30(n thuộc z)

10 tháng 7 2018

a, -9x2+12x-17

=-(9x2-12x+17)

=-[(3x)2-2.3x.2+22+13]

=-[(3x-2)2+13]

=-(3x-2)2-13

mà (3x-2)2\(\ge\)0 \(\forall\)x

=> -(3x-2)2\(\le\)0\(\forall\)x

=>-(3x-2)2-13<0\(\forall\)x

=> -9x2+12x-17<0\(\forall\)x

Vậy -9x2+12x-17 luôn nhận giá trị âm với mọi x

b,-11-(x-1)(x+2)

=-11-x2-x+2

=-x2-x-9

=-(x2+x+9)

=-[x2+2x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{35}{4}\)]

=-[(x+\(\dfrac{1}{2}\))2+\(\dfrac{35}{4}\)]

=-(x+\(\dfrac{1}{2}\))2-\(\dfrac{35}{4}\)

mà (x+\(\dfrac{1}{2}\))2\(\ge\)0

=>-(x+\(\dfrac{1}{2}\))2\(\le0\)

=>-(x+\(\dfrac{1}{2}\))2-\(\dfrac{35}{4}\)<0

=>-11-(x-1)(x+2)<0\(\forall\)x

Vậy -11-(x-1)(x+2) luôn nhận giá trị âm với mọi x

17 tháng 4 2016

Cho phương trình: x- (2m - 1)x - m = 0       

Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)

Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m

17 tháng 6 2015

a) 4x2 - 12x + 11=4x2-12x+9+2=(2x-3)2+2

vì (2x-3)2\(\ge\)0

nên (2x-3)2+2 dương với mọi x

=>4x2 - 12x + 11luôn luôn dương với mọi x

b) x2 - 2x + y2 + 4y + 6

=x2-2x+1+y2+4y+4+1

=(x-1)2+(y+2)2+1

vì (x-1)2\(\ge\)0 ; (y+2)2\(\ge\)0

nên (x-1)2+(y+2)2+1 dương với mọi x;y

=>x2 - 2x + y2 + 4y + 6  luôn dương với mọi x;y

24 tháng 10 2016

a/B=x2+2x+2013