K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

216 chia cho 17 có số dư là 1

Vì bạn đang thi nên mình không cần trình bày

10 tháng 10 2015

Trần Duyên mà bấm máy tính bỏ túi cx ra mà  

18 tháng 8 2015

216=65536
=> \(\frac{2^{16}}{17}\)=\(\frac{65536}{17}\)
Ta có: \(\frac{65536}{17}\)=3855.0588...
=> Số dư=65536-(17.3855)=1

18 tháng 8 2015

1                                  

28 tháng 2 2015

2^16=65536
=>2^16/17=65536/17
Ta co: 65536/17=3855.0588...
=>So dư=65536-(17x3855)=1

7 tháng 12 2015

Là 416 và 841, tick nhé Ngô Duy Uyên

14 tháng 9 2021

Theo đề ra, ta có:

\(\hept{\begin{cases}\left(a+7\right)⋮28\\\left(a+7\right)⋮24\\\left(a+7\right)⋮16\end{cases}}\Rightarrow\left(a+7\right)\in BC\left(28;24;16\right)\)

Ta có:

\(28=2^2.7\)

\(24=2^3.3\)

\(16=2^4\)

\(\Rightarrow BCNN\left(16;18;24\right)=2^4.3.7=336\)

\(\Rightarrow\left(a+7\right)=BC\left(16;18;24\right)=\left\{0;336;672;1008;...\right\}\)

Mà đề ra a là số nhỏ nhất có bốn chữ số

\(a+7=1008\Rightarrow a=1008-7\Rightarrow a=1001\)

23 tháng 2 2020

Ta có : \(2^{16}=\left(2^4\right)^4=16^4\)

Ta có : \(16\equiv\left(-1\right)\left(mod17\right)\)

\(\Leftrightarrow16^4\equiv1\left(mod17\right)\)

\(\Leftrightarrow16^4:17\) dư 1

Hay : \(2^{16}\) cha 17 dư 1.

23 tháng 2 2020

Ta có: \(2^4\equiv-1\left(mod17\right)\)

\(\Rightarrow\left(2^4\right)^4\equiv\left(-1\right)^4\left(mod17\right)\)

\(\Rightarrow2^{16}\equiv1\left(mod17\right)\)

Vậy \(2^{16}\) chia 17 dư 1

Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )

Theo bài ra , ta có :

\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)

\(\Rightarrow a-9∈BC\left(17,25\right)\)

Vì 17 và 25 nguyên tố cùng nhau

=> BCNN( 17 . 25 )  = 17 . 25 = 425

=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }

=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }

=> a  ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )

Mà 99 < a  < 1000

=> a  ∈ { 416 ; 841 }