Tìm số hữu tỉ a,b,c biết 1<a<b+c<a+1 và b<c. Cmr b<a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ làm dc câu a thôi
Ta có \(ab=\frac{a}{b}\Rightarrow ab^2=a\)
Ta có \(a+b=ab\Rightarrow ab^2+b-ab=0\Rightarrow b\left(ab+1-a\right)=0\)
\(\Rightarrow ab+1-a=0\left(b\ne0\right)\Rightarrow ab+1=a\)
Ta có \(a+b=ab\Rightarrow ab+1+b=ab\Rightarrow b+1=0\Rightarrow b=-1\)
Ta lại có \(ab+1=a\Rightarrow1-a=a\Rightarrow a=\frac{1}{2}\)
vậy b=-1;a=1/2
Ta có :
ab = c ; bc = 4a ; ac = 9b
=> ab . bc . ac = c . 4a . 9b
=> ( abc )2 = 36 a . b . c
Với abc ≠ 0
=> abc = 36 , mà ab = c
=> c2 = 36 => c ∈ { -6 ; 6 }
Vì abc = 36 mà bc = 4a
=> 4a2 = 36 => a2 = 9
=> a ∈ { -3 ; 3 }
Vì abc = 36 mà ac = 9b
=> 9b2 = 36
=> b2 = 4 => b ∈ { -2 ; 2 }
Với abc = 0
Xét a = 0 mà ab = c ; bc = 4a ; ac = 9b
=> a = b = c = 0
Xét b = 0 , tương tự ta cũng suy ra được a = b = c = 0
Xét c = 0 , ta cũng suy ra được a = b = c = 0
~~Học tốt~~
Cộng ba đẳng thức đã cho ta được \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=36\)
\(\Leftrightarrow\left(a+b+c\right)^2=36\Rightarrow a+b+c=\pm6\)
Từ đó, ta tính được \(a=\mp2;b=\pm3;c=\pm5\)