tính\(\left[\left\{3^{14}.69+3^{14}.12\right\}:3^{16}-7\right]:2^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{\left[3^{14}.69+12.3^{14}\right]:3^{16}-7\right\}:2^4\)
\(=\left\{\left[3^{14}.\left(69+12\right)\right]:3^{16}-7\right\}:16\)
\(=\left\{\left[3^{14}.81\right]:3^{16}-7\right\}:16\)
\(=\left\{\left[3^{14}.3^4\right]:3^{16}-7\right\}:16\)
\(=\left\{3^{18}:3^{16}-7\right\}:16\)
\(=\left\{3^2-7\right\}:16\)
\(=\left\{9-7\right\}:16\)
\(=2:16\)
\(=\frac{1}{8}\)
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
\(C=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^7\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^{10}\left(7^3+14^3\right)}\)
\(C=\frac{3^4\left(3-1\right)}{3^6\left(1+3\right)}-\frac{7^3\left(1-7\right)}{7^3+\left(2.7\right)^3}\)
\(C=\frac{2}{9.4}-\frac{7^3.\left(-6\right)}{7^3\left(1+8\right)}\)
\(C=\frac{2}{36}-\frac{-6}{9}=\frac{13}{18}\)
\(=\frac{\left(2^{17}+5^{17}\right)\left(3^{14}-5^{12}\right)\left(16-16\right)}{15^2+5^3+67^7}=\frac{\left(2^{17}+5^{17}\right)\left(3^{14}-5^{12}\right).0}{15^2+5^3+67^7}=0\)
\(\left\{\left[3^{14}.69+3^{14}.12\right]:3^{16}-7\right\}:2^4\\ =\left[3^{14}\left(69+12\right):3^{16}-7\right]:2^4=\left[\left(3^{14}.3^4\right):3^{16}-7\right]:2^4\\ =\left(3^2-7\right):2^4=\left(9-7\right):2^4=2:2^4=\dfrac{1}{8}\)
Bạn ơi! Bạn viết sai dấu ngoặc nhé! Mình sửa thành:
[(314. 69 + 314. 12) : 316 - 7] : 24
= {[ 314. (69 + 12)] : 316 - 7} : 24
= {[ 314. 81] : 316 - 7} : 24
= {[314. 34] : 316 - 7} : 24
= {318 : 316 - 7} : 24
= {32 - 7} : 24
= {9 - 7} : 24
= 2 : 16
= \(\dfrac{1}{8}\)
= 8.