K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

Ta co 

\(\frac{a}{b}<\frac{c}{d}\)

=> ad<bc

=> ad+ab<bc+ab

=> a.(b+d)< b.(a+c)

=> \(\frac{a}{b}<\frac{a+c}{b+d}\)     (1)

  Lại có  ad<bc

=> ad+cd<bc+cd

=> d.(a+c)<c.(b+d)

=> \(\frac{a+c}{b+d}<\frac{c}{d}\)      (2)

Tu (1) va (2) => \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)

9 tháng 10 2015

ta có:a/b <c/d =>ad<bc  (1)

thêm ab vào 2 vế của (1) ta có:

ad+ab<bc+ab hay a(b+d) <b(a+c) suy ra a/b <a+c/b+d     (2)

thêm cd vào 2 vế của (1),ta lại có:

ad+cd<bc+cd hay d(a+c)<c(b+d) suy ra c/d >a+c/b+d      (3)

từ (1),(2) và (3) ta suy ra a/b<a+c/b+d<c+d
 

15 tháng 10 2016

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(a;b;m>0\right)\)

Ta có:

\(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}< \frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}\)

                                                    \(< \frac{2a+2b+2c+2d}{a+b+c+d}\)

                                                    \(< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\)

                                                    \(< 2\left(đpcm\right)\)

 

15 tháng 10 2016

Giỏi quá!

5 tháng 9 2016

Ta có:\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad.ab< bc.ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

và \(ad< bc\Rightarrow ad.cd< bc.cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

5 tháng 9 2016

@LêMinhAnh Cảm ơn bạn <3

3 tháng 5 2018

Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 10 2018

Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)

<=> \(a\left(b+d\right)>b\left(a+c\right)\)

<=> \(ab+ad>bc+ba\)

<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]

<=> \(a>b\)

=> \(\frac{a}{b}>\frac{a+c}{b+d}\)

7 tháng 9 2015

Bài 1:Với  a,b,c,d dương

Ta có: \(\frac{a}{a+b+c+d}<\frac{a}{a+b+c}<\frac{a+d}{a+b+c+d}\) 

          \(\frac{b}{a+b+c+d}<\frac{b}{b+c+d}<\frac{b+a}{a+b+c+d}\) 

          \(\frac{c}{a+b+c+d}<\frac{c}{a+c+d}<\frac{c+b}{a+b+c+d}\) 

          \(\frac{d}{a+b+c+d}<\frac{d}{a+b+d}<\frac{d+b}{a+b+c+d}\) 

Cộng vế theo vế 4 bất đẳng thức tên ta có:

    \(\)  1< A <2 (đpcm)

Bài 2: a,b,c là độ dài 3 cạnh của tam giác.ta có: 

    \(\frac{a}{b+c}<\frac{2a}{a+b+c}\) 

   \(\frac{b}{c+a}<\frac{2b}{a+b+c}\) 

  \(\frac{c}{a+b}<\frac{2c}{a+b+c}\) 

Cộng 3 bất đẳng thức trên vế theo vế ta có: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)