Chứng minh rằng : A= \(3+3^2+3^3+....+3^{28}+3^{29}+3^{30}\) chia hết cho 13.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+33...+329+330
A=(3+32+33)+...+(328+329+330)
A=3.(1+3+32)+...+328.(1+3+32)
A=3.13+...+328.13
A=13.(3+...+328) chia hết cho 13
A= 3(1+3+3^2)+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^28.(1+3+3^2)
A=(1+3+3^2)(3+3^4+3^7+...+3^25+3^28)
=13.(3+3^4+3^7+...3^28) vậy A chia hết cho 13
Ta có \(M=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{28}\right)⋮13\Rightarrow M⋮13\)
M = 31 + 32 + 33 +...+ 328 + 329 + 330
M = ( 31 + 32 + 33) + ...+ ( 328 + 329 + 330 )
M = 3(1 + 3 + 32 ) +...+ 328( 1 + 3 + 32)
M = 3 .13 +...+ 328.13
\(\Rightarrow M⋮13\)(đpcm)
!!!
\(M=3^1+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(M=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{28}\left(1+3+3^2\right)\)
\(M=3.13+3^4.13...+3^{28}.13\)
\(M=13.\left(3+3^4...+3^{28}\right)⋮13\)
\(\Rightarrow dpcm\)
Ta có: M=3+32+33+...........+328+329+330
=> 3M=32+33+34+...........+329+330+331
Lấy 3M-M ta có: 2M=(32+33+34+.........+330+331)-(3+32+33+............+329+330)
=> 2M=331-3
=> \(M=\frac{3^{31}-3}{2}\)
a)\(2^{29}+2^{30}=2^{29}\left(1+2\right)=2^{29}.3⋮3\)
Vậy \(2^{29}+2^{30}⋮3\)
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
\(A=3+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{29}+3^{30}\right)\)
\(A=1\left(3+3^2\right)+3^2\left(3+3^2\right)+....+3^{28}\left(3+3^2\right)\)
\(A=\left(1+3^2+...+3^{28}\right)\left(3+3^2\right)\)
\(A=13\left(1+3^2+...+3^{28}\right)⋮13\left(đpcm\right)\)