Giả sử a, b, c là những hằng số sao cho a + b + c = 0
CMR đa thức f(x) = a2 + bx + c có nghiệm là x = 1
Áp dụng để tìm 1 nghiệm của đa thức f(x) = 8x2 - 6x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(1)=0
=>a+b+c=0(luôn đúng)
b: f(x)=0
=>5x^2-6x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
a: f(1)=a+b+c=0
=>x=1 là nghiệm
b: Vì 5-6+1=0
nên f(x)=5x^2-6x+1 có một nghiệm là x=1
a) Thay x = 1 vào đa thức F(x), ta có:
F(1) = a.12 + b.1 + c = a+ b + c
Mà a + b + c = 0
Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)
b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0
Do đó, đa thức có 1 nghiệm là x = 1
a) \(f\left(x\right)=8x^2-6x-2=0\)
\(\Leftrightarrow8x^2-8x+2x-2=0\)
\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)
b) \(g\left(x\right)=5x^2-6x+1=0\)
\(\Leftrightarrow5x^2-5x-x+1=0\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{5};1\right\}\)
Ta có \(f\left(x\right)=ax^2+bx+c\)
Thay x=-1 ta có:\(f\left(-1\right)=a-b+c=a+c-b\)
mà \(a+c=b\)
nên \(f\left(-1\right)=a+c-b=b-b=0\)
Vậy f(x)=ax^c+bx+c có nghiệm là -1
Ta có: \(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\)
nên \(x=1\) là một nghiệm của đa thức \(f\left(x\right)\)
Ta thấy \(8+\left(-6\right)+\left(-2\right)=0\) nên \(f\left(x\right)=8x^2-6x-2\) có một nghiệm \(x=1\)