K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

các bạn ơi giúp mình với

1 tháng 7 2019

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

1 tháng 7 2019

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

1 tháng 7 2019

tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,

Akai Haruma, @Nguyễn Việt Lâm

giúp mk vs! ngày mai phải nộp r

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

23 tháng 11 2015

tui giải khác không biết phải không =]]

=>4 \(\left(\sqrt{x+1}\right)^2\)-  4 \(\left(\sqrt{1-x}\right)^2\)+(3 - x) = 3\(\left(\sqrt{1-x}\right)^2\)

= >4(x+1) -4(1-x) + (3-x) = 3(1-x)

=>4x +4 -4 +4x +3 -x = 3 - 3x

=>10x = 0

=> x=0 => pt VN

3 tháng 4 2020

\(ĐKXĐ:0\le x\le1\)

Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{1-x}=b\\\sqrt[4]{\frac{1}{2}}=c\end{cases}}\left(a,b,c\ge0\right)\)

Ta có hpt : 

\(\hept{\begin{cases}a+a^2+b+b^2=2c+2c^2\\a^4+b^4=2=2c^4\end{cases}\left(^∗\right)}\)

Áp dụng BĐT : 

\(a^2+b^2\le\sqrt{2\left(a^4+b^4\right)}=\sqrt{2.2c^4}=2c^2\left(c>0\right)\left(1\right)\)

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\le\sqrt{2.2c^2}=2c\left(2\right)\)

\(\left(1\right)+\left(2\right)\) vế theo vế \(\Rightarrow a^2+b^2+a+b\le2c^2+2c\)

Để dấu " = " ở (* ) xảy ra 

\(\Rightarrow a=b\Rightarrow a^4=b^4\Rightarrow x=1-x\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

5 tháng 4 2020

https://www.facebook.com/khoi.nguyenduykhoi.399 ( face book mình ) kết bạn nhá r mình gửi bài làm cho 

ko chụp ảnh gửi trên OLM đc mà bài  này mình bày những chô trên OLm ko ghi đc 

Nên kết bạn . mình gửi ảnh cho

5 tháng 4 2020

ĐKXĐ : \(0\le x\le1\)

Đặt : \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{1-x}=b\\\sqrt[4]{\frac{1}{2}}=c\end{cases}}\left(a,b,c\ge0\right)\)

Ta có HPT 

\(\hept{\begin{cases}a+a^2+b+b^2=2c+2c^2\\a^4+b^4=2=2c^4\end{cases}\left(^∗\right)}\)

Áp dụng BĐT : 

\(a^2+b^2\le\sqrt{2\left(a^4+b^4\right)}=\sqrt{2.2c^4}=2c^2\left(c>0\right)\left(1\right)\)

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\le\sqrt{2.2c^2}=2c\left(2\right)\)

(1) + (2) vế theo vế \(\Rightarrow a^2+b^2+a+b\le2c^2+2c\)

Để dấu " = " ở (*) xảy ra 

\(\Rightarrow a=b\Rightarrow a^4=b^4\Rightarrow x=1-x\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)