Chứng minh rằng \(X^5+Y^5>\) hoặc bằng x mũ bốn y cộng x y mũ bốn x và y khác 0 x+y lớn hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-5)^2018>=0
y+1)^2018>=0
=>(x-5)^2018+(y+1)^2018>=0
dấu = xảy ra <=>x=5;y=-1
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!
Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.
#)Giải :
\(\frac{x}{5}=\frac{y}{3}\)và x2 - y2 = 4 ( x,y > 0 )
\(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\Rightarrow\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
Vậy ...................................................