K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\)\(\Rightarrow\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\)

\(\Rightarrow\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)

tuongtu \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\)

cộng 2 vế trên ta có \(-\left(x+y\right)=x+y\Rightarrow x+y=0\)

17 tháng 3 2019

ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)

Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:

\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)

\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))

Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)

Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)

+) Với  \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)

+) Với  \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)

Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)

6 tháng 9 2017

ko hiện đc công thức

6 tháng 9 2017

Chắc là mình ghi sai

5 tháng 6 2016

BẠN LÀM CKO CÁI MẪU TRONG DẤU NGOẶC THỨ NHẤT THÀNH HẰNG ĐẲNG THỨC SỐ 3 RỒI LÀM ,..

28 tháng 11 2016

Ta có

\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)

Thế vào ta được

\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)

\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)

NV
14 tháng 11 2021

Do \(2\in[2;+\infty)\Rightarrow\) khi \(x=2\) thì \(f\left(x\right)=\dfrac{2\sqrt{x+2}-3}{x-1}\Rightarrow f\left(2\right)=\dfrac{2\sqrt{2+2}-3}{2-1}=1\)

\(-2\in\left(-\infty;2\right)\) \(\Rightarrow\) khi \(x=-2\) thì \(f\left(x\right)=x^2-1\Rightarrow f\left(-2\right)=\left(-2\right)^2-1=3\)

\(\Rightarrow P=1+3=4\)

14 tháng 11 2021

dạ e cảm ơn nhiều ạ 

1 tháng 4 2019

xàm loz