K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Hỏi đáp Toán

30 tháng 7 2020

Sửa lại ạ!

a) \(\left(3x-1\right)^2-16\)

\(=\left(3x-1\right)^2-4^2\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

b) \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4\right)^2-\left(7x\right)^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-4-2x\right)\left(-4+12x\right)\)

c) \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+14\right)\left(3x-4\right)\)

d) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)

\(=\left(3x+1\right)^2-\left[2\left(x-2\right)\right]^2\)

\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)

\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)

\(=\left(x+5\right)\left(5x-3\right)\)

e) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)

\(=\left[3\left(2x+3\right)\right]^2-\left[2\left(x+1\right)\right]^2\)

\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)

\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)

\(=\left(4x+7\right)\left(8x+11\right)\)

P/s: Ko chắc!

Thu gọn chưa hết kìa bạn ơi

6 tháng 8 2016

\(A=3a^2c^2+bd+3abc+acd=\left(3a^2c^2+3abc\right)+\left(bd+acd\right)=3ac\left(ac+b\right)+d\left(b+ac\right)\\ =\left(3ac+d\right)\left(ac+b\right)\)

\(B=a^2c-a^2d-b^2d+b^2c=a^2\left(c-d\right)-b^2\left(c-d\right)=\left(a^2-b^2\right)\left(c-d\right)\\=\left(a-b\right)\left(a+b\right)\left(c-d\right)\)

\(C=8x^2+4xy-2ax-ay=\left(8x^2+4xy\right)-\left(2ax+ay\right)=4x\left(2x+y\right)-a\left(2x+y\right)\\ =\left(4x-a\right)\left(2x+y\right)\)

\(E=3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2\right)-12c^2=3\left(a-b\right)^2-12c^2\\ =3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)

5 tháng 10 2017

Chị cx học Tê Tiêu ạ,A mấy ạ

5 tháng 10 2017

A1 em ạ

12 tháng 11 2016

Giải:

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

\(\Rightarrow a=2k,b=3k,c=4k\)

Ta có: \(\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

\(=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}\)

\(=\frac{2^2.k^2+3^2.k^2+2.4^2.k^2}{2^2.k^2-4.3^2.k^2+4^2.k^2}\)

\(=\frac{4.k^2+9.k^2+32.k^2}{4.k^2-36.k^2+16.k^2}\)

\(=\frac{k^2.\left(4+9+32\right)}{k^2.\left(4-36+16\right)}\)

\(=\frac{45}{-16}\)

 

12 tháng 11 2016

\(A=\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\)

Suy ra \(A=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}=\frac{4k^2+9k^2+2\cdot16k^2}{4k^2-4\cdot9k^2+16k^2}\)

\(=\frac{k^2\left(4+9+32\right)}{k^2\left(4-36+16\right)}=\frac{45}{-16}=-\frac{45}{16}\)