K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 2 2023

Lời giải:

Áp dụng tính chất tia phân giác:

$\frac{AD}{DC}=\frac{AB}{BC}$

$\Leftrightarrow \frac{3}{DC}=\frac{AB}{5}$

$\Rightarrow 15=AB.DC=AB(AC-AD)=AB(AC-3)(1)$

Mà: $AB^2+AC^2=BC^2=25(2)$

Từ $(1); (2)\Rightarrow  (\frac{15}{AC-3})^2=AB^2=25-AC^2$
$\Leftrightarrow AC^4-6AC^3-16AC^2+150AC=0$

$\Leftrightarrow AC^3-6AC^2-16AC+150=0$

PT giải ra số khá xấu. Bạn xem lại đề.

8 tháng 9 2021

Bạn viết đề sai rồi

Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số

 

28 tháng 8 2019

#)Giải :

(Hình bn tự vẽ)

AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)

Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)

Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)

Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@

Chắc đề sai rồi

18 tháng 10 2019

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

a: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên D là trung điểm của BC

hay BD=CD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

c: Đặt AD/4=BD/3=k

=>AD=4k; BD=3k

Xét ΔADB vuông tại D có \(AB^2=AD^2+BD^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AD=8(cm)

28 tháng 2 2022

a) Xét tam giác ABC cân tại A:

AD là phân giác góc A (gt).

=> AD là trung tuyến (T/c tam giác cân).

=> D là trung điểm của BC.

=> BD = CD.

b) Xét tam giác ABC cân tại A:

AD là phân giác góc A (gt).

=> AD là đường cao (T/c tam giác cân).

=> AD vuông góc với BC.

c) Ta có: \(\dfrac{AD}{BD}=\dfrac{4}{3}.\Rightarrow BD=\dfrac{3}{4}AD.\)

Xét \(\Delta ADB\) vuông tại D:

\(AB^2=AD^2+BD^2\left(Pytago\right).\\ \Rightarrow AB^2=AD^2+\left(\dfrac{3}{4}AD\right)^2.\\ \Leftrightarrow AB^2=AD^2+\dfrac{9}{16}AD^2=\dfrac{25}{16}AD^2.\\ \Rightarrow10^2=\dfrac{25}{16}AD^2.\\ \Rightarrow AD^2=64.\\ \Rightarrow AD=8\left(cm\right).\)

https://alfazi.edu.vn/question/5b8a626cb067113822bfbc62

vào đây để nhận phần quà hấp dẫn nha

và nói là Nick lâm mời nhé 

cám ơn và hậu tạ