Cho hình bình hành ABCD, I là giao điểm 2 đường chéo gọi E là một điểm thuộc cạnh AB, F là giao điểm của EI và CD vẽ EG // AC ( G thuộc BC), FH // AC ( H thuộc AD)
CMR : EG = HF; HE // FG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAE và ΔOCF có
góc OAE=góc OCF
OA=OC
góc AOE=góc COF
Do đó: ΔOAE=ΔOCF
=>EA=CF: OE=OF
Xét ΔBAC có EG//AC
nên EG/AC=BE/BA
Xét ΔDAC có HF//AC
nên HF/AC=DF/DC
=>EG=HF
b: Xét tứ giác EGFH có
EG//FH
EG=FH
Do đó: EGFH là hình bình hành
=>HE//FG
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:
a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng
b) Tứ giác EGFH lầ hình vuông