K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

Từ giả thiết \(c\ne0\) và ab, bc là các số có hai chữ số nên a, b, c > 0. Hoán vị các trung tỉ và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{ab}{bc}=\frac{a+c}{b+c}=\frac{ab-\left(a+b\right)}{bc-\left(b+c\right)}=\frac{9a}{9b}=\frac{a}{b}=\frac{\left(a+b\right)-a}{\left(b+c\right)-b}=\frac{b}{c}\)

\(\Rightarrow\frac{ab}{b}=\frac{bc}{c}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)

18 tháng 11 2019

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}.\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}.\)

\(\Rightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Rightarrow\frac{a+b}{a+b}+\frac{9a}{a+b}=\frac{b+c}{b+c}+\frac{9b}{b+c}\)

\(\Rightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Rightarrow a.\left(b+c\right)=b.\left(a+b\right)\)

\(\Rightarrow ab+ac=ab+b^2\)

\(\Rightarrow ac=b^2\)

\(\Rightarrow ac=b.b\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 1 2020

Câu hỏi của Best Friend Forever - Toán lớp 7 - Học toán với OnlineMath

25 tháng 11 2018

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)

\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

25 tháng 11 2018

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10a+11b+c}{a+2b+c}\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10a+11b+c}{a+2b+c}\Rightarrow\left(10a+b\right).\left(a+2b+c\right)=\left(a+b\right).\left(10a+11b+c\right)\)

\(10a^2+20ab+10ac+ab+2b^2+bc=10a^2+11ab+ac+10ab+11b^2+bc\)

\(\Rightarrow9ac=9b^2\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

p/s: bài này khó chơi lém, đoạn mk giản đơn hai vế ko hiểu ib vs mk :))

10 tháng 8 2017

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)

\(\Rightarrow ab\left(b+c\right)=bc\left(a+b\right)\)

\(\Rightarrow ab^2+abc=abc+b^2c\)

\(\Rightarrow ab^2=b^2c\)

\(\Rightarrow a=c\)

Đến đây ko còn manh mối :v

14 tháng 4 2016

bn viết sai đề rồi,làm hoài ko ra