K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>DE=AH

=>\(DE^2=BH\cdot CH\)

b: Ta có: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

=>góc MAC+góc AED=90 độ

=>AM vuông góc với DE

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

11 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

=>ADHE là hình chữ nhật

b: Vì ADHE là hình chữ nhật

nên AH=DE(1)

Xét ΔAHM vuông tại H có AM là cạnh huyền

nên AH<=AM(2)

Từ (1) và (2) suy ra DE<=AM

Dấu '=' xảy ra khi H trùng với M

c: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{ACB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB

Ta có: MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}\)

\(=90^0\)

=>DE\(\perp\)AM

 

18 tháng 12 2023

a:

Sửa đề: Là hình chiếu của trên AB,AC

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAD}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

\(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM\(\perp\)DE

c: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Ta có: ADHE là hình chữ nhật

=>AH=DE

mà AH=4,8cm

nên DE=4,8cm

 

13 tháng 10 2017

a) Xét t/g ABC có :

AM là trung tuyến 

\(\Rightarrow\)\(AM=\frac{1}{2}BC\Leftrightarrow AM=MB=MC\)

\(\Rightarrow\)t/g AMC cân tại M ( MA = MC )

\(\Rightarrow\)\(\widehat{MAC}=\widehat{MCA}\)

Mà \(\widehat{MCA}=\widehat{HAB}\)( cùng phụ với góc HBA )

\(\Rightarrow\)\(\widehat{HAB}=\widehat{MAC}\)( đpcm ) 

13 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>DE=AH

=>\(DE^2=BH\cdot CH\)

b: Ta có: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)

28 tháng 1 2022

a, Xét tứ giác ADHE có : 

^A = ^ADH =  ^HEA = 900

Vậy tứ giác ADHE là hcn 

Vậy AH = DE ( 2 đường chéo bằng nhau ) 

b, Xét tam giác AEH và tam giác AHC có : 

^AEH = ^AHC = 900

^A _ chung 

Vậy tam giác AEH ~ tam giác AHC ( g.g ) 

=> AH/AC = AE/AH => AH^2 = AE.AC (1) 

tương tự với tam giác ADH ~ tam giác AHB (g.g)

=> AD/AH = AH/AB => AH^2=AD.AB (2) 

Từ (1) ; (2) suy ra AE.AC = AD.AB 

c, Xét tam giác ABH và tam giác CAH 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH ~ tam giác CAH (g.g)

=> AH/CH = BH/AH => AH^2 = BH.CH 

=> CH = AH^2/BH = 144/9 = 16

=> BC = BH + CH = 25 cm 

Diện tích tam giác ABC là : SABC = 1/2 . AH . BC 

= 1/2 . 12 . 25 = 150 cm2