tìm số nguyên tố B sao cho B+2 và B+4 đều là số nguyên tố
Giúp mình với!Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có tất cả các số nguyên tố là:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
2 là số chẵn duy nhất mà số chẵn +số chẵn sẽ ra số chẵn nên loại
Nếu B=3 suy ra 3+2=5:3+4=7(chọn)
Nếu B=5 suy ra 5+2=7:5+4=9(Loại)
Tiếp tục đến 83 nhé
Dáp số là 3 và 11
Giải bằng phương pháp đánh giá em nhé.
+ Nếu p = 2 ta có:
2 + 8 = 10 (loại)
+ Nếu p = 3 ta có:
3 + 8 = 11 (nhận)
4.3 + 1 = 13 (nhận)
+ Nếu p = 3\(k\) + 1 ta có:
p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9 = 3(\(k+3\)) là hợp số (loại)
+ nếu p = 3\(k\) + 2 ta có:
4p + 1 = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại
Vậy p = 3 là giá trị thỏa mãn đề bài
Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
Ta có p2-4=(p-2)(p+2)
Vì p2-4 là số nguyên tố
Lại có p-2 <p+2
=> p-2=1
=> p=3
Thử lại p2+4=32+4=13(TM)
Vậy số nguyên tố cần tìm là 3
a)
p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
b)
p=2=>6+p=6+2=8 là hợp số=>loại p = 2
p=3
=>6+p=6+3=9 là hợp số =? loại p=3
p=5
=>p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+14=5+14=19
đều là snt => p =5 thỏa mãn
nếu p>5
=>p có dạng :
p=5k+1
=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1
p=5k+2
=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2
Vậy p=5
Nếu B = 3k thì B = 3 (vì B là số nguyên tố), khi đó B + 2 = 5, B + 4 = 7 đều là các số nguyên tố.
Nếu B = 3k + 1 thì B + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên B + 2 là hợp số, trái với đề bài. Nếu B = 3k + 1 thì B + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên B + 4 là hợp số, trái với đề bài. Vậy số nguyên tố B cần tìm là : 3Lời giải:
TH1: \(B\vdots 3\Rightarrow B=3\Rightarrow \left\{\begin{matrix} B+2=5\in\mathbb{P}\\ B+4=7\in\mathbb{P}\end{matrix}\right.\)
TH2: \(B\not\vdots 3\). Khi đó, $B$ có thể có các dạng sau:
\(\bullet B=3k+1\Rightarrow B+2=3k+3\vdots 3\Rightarrow B+2=3\Leftrightarrow B=1\not\in\mathbb{P}\)
(vô lý)
\(\bullet B=3k+2\Rightarrow B+4=3k+6\vdots 3\Rightarrow B+4=3\Leftrightarrow B=-1\not\in\mathbb{P}\)
(vô lý)
Vậy $B=3$ thỏa mãn.