K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

\(M=1+2+2^2+...+2^{100}\\ \Rightarrow2.M=2+2^2+2^3+...+2^{101}\\ \Rightarrow2.M-M=M=2^{101}-1\)

\(N=1+3^2+3^4+....+3^{100}\\ \Rightarrow3^2.N=3^2+3^4+3^6+....+3^{102}\\ \Rightarrow9.N-N=3^{102}-1\\ \Rightarrow N=\dfrac{3^{102}-1}{8}\)

13 tháng 10 2017

Bài này yêu cầu lm gì vậy ??????

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

27 tháng 10 2024

1990.1990 -1992.1988

 

13 tháng 11 2021

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32

17 tháng 12 2023

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

`#3107.101107`

Gọi biểu thức trên là A

Ta có:

\(A=1+5^2+5^4+...+5^{40}\\ =1\cdot\left(1+5^2\right)+5^4\cdot\left(1+5^2\right)+...+5^{38}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(1+5^4+...+5^{38}\right)\\ =26\cdot\left(1+5^4+...+5^{38}\right)\)

Vì \(26\cdot\left(1+5^4+...+5^{38}\right)\text{ }⋮\text{ }26\)

\(\Rightarrow A\text{ }⋮\text{ }26\)

_______

Gọi biểu thức trên là B

Ta có:

\(B=1+2^2+2^4+...+2^{100}\\ =1\cdot\left(1+2^2+2^4\right)+2^6\cdot\left(1+2^2+2^4\right)+...+2^{96}\cdot\left(1+2^2+2^4\right)\\ =\left(1+2^2+2^4\right)\cdot\left(1+2^6+...+2^{96}\right)\\ =21\cdot\left(1+2^6+...+2^{96}\right)\)

Vì \(21\cdot\left(1+2^6+...+2^{96}\right)\text{ }⋮\text{ }21\)

\(\Rightarrow B\text{ }⋮\text{ }21\)

_______

Gọi biểu thức trên là C

Ta có:

\(C=1+3^2+3^4+...+3^{100}\\ =1\cdot\left(1+3^2+3^4+3^6\right)+3^6\cdot\left(1+3^2+3^4+3^6\right)+...+3^{94}\cdot\left(1+3^2+3^4+3^6\right)\\ =\left(1+3^2+3^4+3^6\right)\cdot\left(1+3^6+...+3^{94}\right)\\ =820\cdot\left(1+3^6+...+3^{94}\right)\)

Vì \(820\cdot\left(1+3^6+...+3^{94}\right)\text{ }⋮\text{ }82\)

\(\Rightarrow C\text{ }⋮\text{ }82.\)

6 tháng 10 2023

a) \(A=1+5^2+5^4+5^6...+5^{40}\)

\(\Rightarrow A=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{38}\left(1+5^2\right)\)

\(\Rightarrow A=26+5^4.26+...+5^{38}.26\)

\(\Rightarrow A=26\left(1+5^4+...+5^{38}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+5^6...+5^{40}⋮6\left(dpcm\right)\)

b) \(B=1+2^2+2^4+2^6+...+2^{100}\)

\(\Rightarrow B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{96}\left(1+2^2+2^4\right)\)

\(\Rightarrow B=21+2^6.21+...+2^{96}.21\)

\(\Rightarrow B=21\left(1+2^6+...+2^{96}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+2^6+...+2^{100}⋮21\left(dpcm\right)\)

Bài C tương tự bạn tự làm nhé!

NV
5 tháng 3 2021

\(A=1+3^2+3^4+...+3^{102}\)

\(9A=3^2+3^4+...+3^{102}+3^{104}\)

\(\Rightarrow9A-A=3^{104}-1\)

\(\Rightarrow8A=3^{104}-1\)

\(\Rightarrow A=\dfrac{3^{104}-1}{8}\)

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

28 tháng 12 2022

loading...

29 tháng 5 2021

Đặt A = \(1+2+2^2+2^3+2^4+....+2^{100}\)

2A = \(2\left(1+2+2^2+2^3+2^4+....+2^{100}\right)\)

\(2+2^2+2^3+2^4+2^5+...+2^{101}\)

2A - A = \(\left(2+2^2+2^3+2^4+2^5+....+2^{101}\right)-\left(1+2^2+2^3+2^4+...+2^{100}\right)\)

\(2^{101}-1\)

 

29 tháng 5 2021

undefined

3 tháng 5 2018

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37

=(1+37)x37:2

=703

3 tháng 5 2018

lop 1 khong co cau nay