K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

a, \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+xy^2\right)+\left(x^2z+xyz\right)+\left(xz^2+yz^2\right)+\left(yz^2+xyz\right)\)

\(=xy\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+yz\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+xz+yz+z^2\right)=\left(x+y\right)[x\left(y+z\right)+z\left(y+z\right)]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

b,\(x^{16}+x^8-2=x^{16}+x^8-1-1=\left(x^{16}-1\right)+\left(x^8-1\right)\)

\(=\left(x^8-1\right)\left(x^8+1\right)+\left(x^8-1\right)=\left(x^8-1\right)\left(x^8+2\right)\)

\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+2\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+2\right)\)c,\(A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left(a+1\right)\left(a+4\right)\left(a+2\right)\left(a+3\right)+1\)\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

Đặt \(a^2+5a+5=k\) thế vào biểu thức A ta có:

\(A=\left(k-1\right)\left(k+1\right)+1=k^2-1+1=k^2=\left(a^2+5a+5\right)^2\)

14 tháng 10 2017

C làm đi mày oi

26 tháng 11 2023

a) \(70a+84b-20ab-24b^2\)

\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)

\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)

\(=\left(5a+6b\right)\left(14-4b\right)\)

\(=2\left(5a+6b\right)\left(7-2b\right)\)

b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xyz+xz^2\right)+\left(xyz+y^2z+yz^2\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)

c) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+xy^2\right)+\left(xz^2+yz^2\right)+\left(x^2z+2xyz+y^2z\right)\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x^2+2xy+y^2\right)\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2\)

\(=\left(x+y\right)\left[xy+z^2+z\left(x+y\right)\right]\)

\(=\left(x+y\right)\left(xy+z^2+xz+yz\right)\)

\(=\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)

\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

26 tháng 11 2023

a, 70a + 84b - 20ab - 24b2

 = 14.(5a + 6b) - 4b(5a + 6b)

= (5a + 6b).(14 - 4b) 

26 tháng 11 2023

a: \(70a+84b-20ab-24b^2\)

\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)

\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)

\(=\left(5a+6b\right)\left(14-4b\right)\)

\(=2\left(7-2b\right)\left(5a+6b\right)\)

b: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2\right)+\left(y^2z+yz^2\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+2xyz+xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2yz\right)+yz\left(y+z+x\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)^2+yz\left(y+z+x\right)\)

\(=\left(y+z\right)\cdot x\left(x+y+z\right)+yz\left(y+z+x\right)\)

\(=\left(y+z+x\right)\cdot\left(xy+xz+yz\right)\)

c: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2+2xyz\right)+\left(y^2z+yz^2\right)\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2xz\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz+xy+xz\right)\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

24 tháng 9 2023

\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(x^2z+xz^2+xyz\right)\)

\(=xy\left(x+y+z\right)+yz\left(y+z+x\right)+xz\left(x+z+y\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)

14 tháng 9 2023

3) \(x^2\left(x+2y\right)-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x^2-1\right)\left(x+2y\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(x+2y\right)\)

4) \(x^3-4x^2-9x+36\)

\(=\left(x^3-4x^2\right)-\left(9x-36\right)\)

\(=x^2\cdot\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x^2-9\right)\)

\(=\left(x-4\right)\left(x+3\right)\left(x-3\right)\)

 

 

15 tháng 9 2023

\(x^2\left(x+2y\right)-x-2y\\ =x^2\left(x+2y\right)-\left(x+2y\right)\\ =\left(x^2-1\right)\left(x+2y\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+2y\right)\\ ---\\ x^3-4x^2-9x+36\\ =x^2\left(x-4\right)-9\left(x-4\right)\\ =\left(x^2-9\right)\left(x-4\right)\\ =\left(x-3\right)\left(x+3\right)\left(x-4\right)\)

Bạn thử xem lại đề câu d nhé.

undefinedundefined

Cảm ơn ạ.

 

 

26 tháng 10 2021

\(a,=\left(x-y\right)\left(x+y\right)+11\left(x-y\right)=\left(x-y\right)\left(x+y+11\right)\\ b,=\left(x+z\right)\left(x^2-xz+z^2\right)+y\left(x^2+z^2-xz\right)\\ =\left(x^2-xz+z^2\right)\left(x+y+z\right)\)

26 tháng 10 2021

a. x2 - y2 + 11x - 11y

= (x + y)(x - y) + 11(x - y)

= (x + y + 11)(x - y)

b. Mik ko hiểu đề lắm

29 tháng 7 2019