Chứng minh rằng :
\(A=75.\left(4^{1999}+a^{1998}+...+4^2+4+1\right)+25\) là số chia hết cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(S=1+4+4^2+......+4^{1999}\)
\(\Rightarrow4S=4+4^2+4^3+....+4^{2000}\)
\(\Rightarrow4S-S=\left(4+4^2+4^3+....+4^{2000}\right)-\left(1+4+4^2+.....+4^{1999}\right)\)
\(\Rightarrow3S=4^{2000}-1\Rightarrow S=\frac{4^{2000}-1}{3}\)
Khi đó \(A=75.S=75.\frac{4^{2000}-1}{3}=\frac{75.\left(4^{2000}-1\right)}{3}=\frac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
75 chia hết cho 25.
42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4
=> 75(42007 + ... + 4 + 1) không chia hết cho 100.
Chắc đặt nhầm lớp rồi
Ta có :\(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=\left(4^{2004}+4^{2003}+...+4^2+4+1\right).4\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)\)\(-\left(4^{2004}+4^{2003}+...+4+1\right)\)
\(3B=\left(4^{2005}-1\right)\)\(\Rightarrow\frac{4^{2005}-1}{3}\)
\(\Rightarrow A=75.\frac{4^{2005}-1}{3}+25\)
\(\Rightarrow A=25.\left(4^{2005}-1\right)+25\)
\(\Rightarrow A=25.\left(4^{2005}-1+1\right)\)
\(\Rightarrow A=25.4.4^{2004}\)
\(\Rightarrow A=100.4^{2004}\)
Mà 100 chia hết 100 nên \(100.4^{2004}\) chia hết cho 100
B=4^0 + 4^1 +...+ 4^2004
4B=4^1+4^2+...+4^2005
3B=4^2004-4^0
B=(4^2004-4^0):3
Thay B vào ta có :
A=75.(4^2004-4^0):3+25
A=25.(4^2004-4^0)+25
A=25.4^2004
A=100.4^2003
Vậy A chia hết cho 100
đặt S=1+4+42+......+41999S=1+4+42+......+41999
⇒4S=4+42+43+....+42000⇒4S=4+42+43+....+42000
⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)
⇒3S=42000−1⇒S=42000−13⇒3S=42000−1⇒S=42000−13
Khi đó A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư?
Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.
a) 144: 3; b) 144: 13; c) 144: 30.
Phương pháp: Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.
Nếu r = 0 thì phép chia hết, nếu 0< r < b thì phép chia có dư
Lời giải chi tiết
144 = 3.48 + 0
=> Phép chia hết
b) 144 = 13.11 + 1
=> Phép chia có dư
c) 144 = 30.4 + 24
=> Phép chia có dư
Lời giải:
Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$
$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$
$\Rightarrow 3A=4^{2022}-1$
$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$
Ta có đpcm.
\(A=75\left[4\left(4^{2006}+4^{2005}+...+4+1\right)+1\right]+25\)
\(A=300\left(4^{2006}+4^{2005}+...+4+1\right)+75+25\)
\(A=300\left(4^{2006}+4^{2005}+...+4+1\right)+100\)
\(A=100\left[3\left(4^{2006}+4^{2005}+...+4+1\right)+1\right]⋮100\)
\(A=75.\left(4^{2004}+4^{2003}+......+4^2+1\right)+25\)
Đặt :
\(B=4^{2004}+4^{2003}+.......+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+........+4^2+4\)
\(\Leftrightarrow4B-B=\left(4^{2005}+4^{2004}+......+4^2+4\right)-\left(4^{2004}+4^{2003}+.....+4+1\right)\)
\(\Leftrightarrow3B=4^{2005}-1\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(\Leftrightarrow A=75.\dfrac{4^{2005}-1}{3}+25\)
\(\Leftrightarrow A=25.\left(4^{2004}-1+1\right)\)
\(\Leftrightarrow A=25.4.4^{2003}\)
\(\Leftrightarrow A=100.4^{2003}⋮100\left(đpcm\right)\)
Đặt \(B=1+4+4^2+...+4^{1998}+4^{1999}\)
\(\Rightarrow4B=4+4^2+4^3+...+4^{1999}+4^{2000}\)
\(\Rightarrow4B-B=\left(4+4^2+4^3+...+4^{2000}\right)-\left(1+4+4^2+...+4^{1999}\right)\)
\(\Rightarrow3B=4^{2000}-1\)
\(\Rightarrow B=\dfrac{4^{2000}-1}{3}\)
Khi đó ta có:
\(A=75.B=75.\dfrac{4^{2000}-1}{3}=\dfrac{75.\left(4^{2000}-1\right)}{3}=\dfrac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: \(4^{2000}-1=\left(4^4\right)^{500}-1=\left(...6\right)-1=...5\)
\(\Rightarrow25.4^{2000}-25=25.\left(...5\right)-25=\left(...5\right)-25=...0⋮100\left(đpcm\right)\)
Ta có:
\(A=75.\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\)
\(A=25.3.\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\) \(A=25.\left(4-1\right).\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\)
\(A=25.\left(4^{2000}+4^{1999}+...+4^3+4^2+4-4^{1999}-4^{1998}-...-4^2-4-1\right)+25\)\(A=25.\left(4^{2000}-1\right)+25\)
\(A=25.\left(4^{2000}-1+1\right)\)
\(A=25.4^{2000}=25.4.4^{1999}=100.4^{1999}\)Vây:A là số chia hết cho 100