CMR
a ) \(\left(n+3\right)\left(n+18\right)\)chia hết cho 2 với mọi \(n\in N\)
b) \(\left(5n+7\right)\left(3n+4\right)\)chia hết cho 2 với mọi \(n\in N\)
MỌI NGƯỜI GIÚP NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
trong các số tự nhiên, bạn luôn thấy : số chẵn . 1 số bất kì = số chẵn
thật vậy, bạn luôn có số chẵn 2n và một số k bất kì với n và k thuộc N
khi đó bạn có 2n.k luôn chia hết cho 2 => số chẵn
tương tự ta có:
8n = 2n.4 (với k = 4) => số chẵn
ta có số chẵn + (1 số lẻ) = số lẻ => 2n.4 + 1 là 1 số lẻ => 8n + 1 là 1 số lẻ
hoàn toàn tương tự với 6n + 5. với 2n.3 (k ở đây =3) => 6n là số chẵn. => 6n + 5 là số lẻ
=> không chia hết cho 2
=> bạn có (8n + 1) không chia hết cho 2 với mọi n thuộc N
(6n + 5) không chia hết cho 2 với mọi n thuộc N
=> (8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
[(x+2)(x+5)][(x+3)(x+4)] -24
= (x2+7x+10)(x2+7x+12) -24
=(x2+7x+11-1)(x2+7x+11+1) -24
=(x2+7x+11)2-1-24
=(x2+7x+11)2 -25
=(x2+7x+11-5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)
✽